Ideal-versions of Bolzano-Weierstrass property

Jiakui Yu, Shuguo Zhang

College of Mathematics Sichuan University

The 9th International Conference on Computability Theory and Foundations of Mathematics Wu Han, March 21-27, 2019

Ideals on ω

Let S be a set and ${\mathcal I}$ be a collection of subsets of S which contains \emptyset and does not contain S.

Definition

 ${\mathcal I}$ is called an ideal if it is closed under taking subsets and finite unions.

Usually, we suppose $S = \omega$ and the ideal containing all finite sets. Actually, we can think ideal as collection of small subsets.

Ideals on ω

Let S be a set and ${\mathcal I}$ be a collection of subsets of S which contains \emptyset and does not contain S.

Definition

 ${\mathcal I}$ is called an ideal if it is closed under taking subsets and finite unions.

Usually, we suppose $S=\omega$ and the ideal containing all finite sets. Actually, we can think ideal as collection of small subsets.

Ideals on ω

Let S be a set and ${\mathcal I}$ be a collection of subsets of S which contains \emptyset and does not contain S.

Definition

 ${\cal I}$ is called an ideal if it is closed under taking subsets and finite unions.

Usually, we suppose $S=\omega$ and the ideal containing all finite sets. Actually, we can think ideal as collection of small subsets.

Let ${\mathcal I}$ be an ideal on $\omega,$ the following notations will be used frequently.

- $\mathcal{I}^+ = \{ A \subseteq \omega : A \notin \mathcal{I} \};$
- $\mathcal{I}^* = \{A \subseteq \omega : \omega \setminus A \in \mathcal{I}\};$
- $\mathcal{I}|A = \{I \cap A : I \in \mathcal{I}\}$, for each $A \in \mathcal{I}^+$,

If $A \in \mathcal{I}^+$, we say that A is an \mathcal{I} -positive set.

Let ${\mathcal I}$ be an ideal on $\omega,$ the following notations will be used frequently.

- $\mathcal{I}^+ = \{ A \subseteq \omega : A \notin \mathcal{I} \};$
- $\mathcal{I}^* = \{A \subseteq \omega : \omega \setminus A \in \mathcal{I}\};$
- $\mathcal{I}|A = \{I \cap A : I \in \mathcal{I}\}$, for each $A \in \mathcal{I}^+$,

If $A \in \mathcal{I}^+$, we say that A is an \mathcal{I} -positive set.

The following special ideals were studied in set theory, topology and combinatorics:

Definition

- *I* is *local* Q if for every partition {A_n : n ∈ ω} ⊂ Fin of ω, there exists A ∈ *I*⁺ such that |A ∩ A_n| ≤ 1 for each n ∈ ω;
- *I* is *locally selective* if for every partition {*A_n* : *n* ∈ ω} ⊂ *I* of ω, there exists *A* ∈ *I*⁺ such that |*A* ∩ *A_n*| ≤ 1 for each *n* ∈ ω.
- \mathcal{I} is *weak* Q if for every $A \in \mathcal{I}^+$, $\mathcal{I}|A$ is local Q.
- \mathcal{I} is *weakly selective* if for every $A \in \mathcal{I}^+$, $\mathcal{I}|A$ is locally selective.

Definition

Let \mathcal{I} be an ideal on ω , $r \in \omega$, and $c : [\omega]^2 \to \{0, \cdots, r-1\}$ being a coloring. $A \subset \omega$ is \mathcal{I} -homogeneous for c if there is $k \in \{0, \cdots, r-1\}$ such that for every $a \in A$,

$$\{b\in A: c(\{a,b\})\neq k\}\in \mathcal{I}.$$

Definition

Let \mathcal{I} be an ideal on ω . \mathcal{I} is $Ramsey^*$ if for every finite coloring of $[\omega]^2$ there exists an \mathcal{I} -homogeneous $A \in \mathcal{I}^+$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Definition

Let \mathcal{I} be an ideal on ω , $r \in \omega$, and $c : [\omega]^2 \to \{0, \cdots, r-1\}$ being a coloring. $A \subset \omega$ is \mathcal{I} -homogeneous for c if there is $k \in \{0, \cdots, r-1\}$ such that for every $a \in A$,

$$\{b\in A: c(\{a,b\})\neq k\}\in \mathcal{I}.$$

Definition

Let \mathcal{I} be an ideal on ω . \mathcal{I} is $Ramsey^*$ if for every finite coloring of $[\omega]^2$ there exists an \mathcal{I} -homogeneous $A \in \mathcal{I}^+$.

Definition

Let \mathcal{I} , \mathcal{J} be ideals on ω . We say that the pair $(\mathcal{I}, \mathcal{J})$ is Ramsey^{*} if for every finite coloring of $[\omega]^2$ there exists $A \in \mathcal{I}^+$ that is \mathcal{J} -homogeneous.

When $\mathcal{I} = \mathcal{J}$ we say that \mathcal{I} has $Ramsey^*$ instead of $(\mathcal{I}, \mathcal{I})$ having $Ramsey^*$. It is not hard to see that for any ideals \mathcal{I} , \mathcal{J} on ω , if $\mathcal{I} \not\subset \mathcal{J}$, then the pair $(\mathcal{J}, \mathcal{I})$ is $Ramsey^*$.

Definition

Let \mathcal{I} , \mathcal{J} be ideals on ω . We say that the pair $(\mathcal{I}, \mathcal{J})$ is Ramsey^{*} if for every finite coloring of $[\omega]^2$ there exists $A \in \mathcal{I}^+$ that is \mathcal{J} -homogeneous.

When $\mathcal{I} = \mathcal{J}$ we say that \mathcal{I} has $Ramsey^*$ instead of $(\mathcal{I}, \mathcal{I})$ having $Ramsey^*$. It is not hard to see that for any ideals \mathcal{I}, \mathcal{J} on ω , if $\mathcal{I} \notin \mathcal{J}$, then the pair $(\mathcal{J}, \mathcal{I})$ is $Ramsey^*$.

Let \mathcal{I} be an ideal on ω . Recall that a sequence $\langle x_n : n \in A \rangle$ in [0,1] is \mathcal{I} -increasing if for every $N \in A$

$$\{n \in A : x_N \ge x_n\} \in \mathcal{I}.$$

Analogously, we can define \mathcal{I} -decreasing, \mathcal{I} -nonincreasing and \mathcal{I} -nondecreasing sequences. A sequence $\langle x_n : n \in \omega \rangle$ in [0,1] is \mathcal{I} -monotone if it is \mathcal{I} -nonincreasing or \mathcal{I} -nondecreasing.

Definition

Let \mathcal{I} be an ideal on ω , we say that \mathcal{I} is Mon^* if for every sequence $\langle x_n : n \in \omega \rangle$ in [0,1] there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{I} -monotone.

・ 同 ト ・ ヨ ト ・ ヨ

Let \mathcal{I} be an ideal on ω . Recall that a sequence $\langle x_n : n \in A \rangle$ in [0,1] is *I*-increasing if for every $N \in A$

$$\{n \in A : x_N \ge x_n\} \in \mathcal{I}.$$

Analogously, we can define \mathcal{I} -decreasing, \mathcal{I} -nonincreasing and \mathcal{I} -nondecreasing sequences. A sequence $\langle x_n : n \in \omega \rangle$ in [0,1] is \mathcal{I} -monotone if it is \mathcal{I} -nonincreasing or \mathcal{I} -nondecreasing.

Definition

Let \mathcal{I} be an ideal on ω , we say that \mathcal{I} is Mon^* if for every sequence $\langle x_n : n \in \omega \rangle$ in [0,1] there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{I} -monotone.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Let \mathcal{I} be an ideal on ω . Recall that a sequence $\langle x_n : n \in A \rangle$ in [0,1] is *I*-increasing if for every $N \in A$

$$\{n \in A : x_N \ge x_n\} \in \mathcal{I}.$$

Analogously, we can define \mathcal{I} -decreasing, \mathcal{I} -nonincreasing and \mathcal{I} -nondecreasing sequences. A sequence $\langle x_n : n \in \omega \rangle$ in [0,1] is \mathcal{I} -monotone if it is \mathcal{I} -nonincreasing or \mathcal{I} -nondecreasing.

Definition

Let \mathcal{I} be an ideal on ω , we say that \mathcal{I} is Mon^* if for every sequence $\langle x_n : n \in \omega \rangle$ in [0,1] there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{I} -monotone.

Introduction Introduction (\mathcal{I}, \mathcal{J})-splitting family and (\mathcal{I}, \mathcal{J})-I Ideals on ω Combinational ideals Ideals with combinational production

Ideals with combinational properties

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω . We say that the pair $(\mathcal{I}, \mathcal{J})$ is Mon^* if every sequence in [0, 1] contains a \mathcal{J} -monotone \mathcal{I} -subsequence. That is, for every sequence $\langle x_n : n \in \omega \rangle$ in [0, 1], there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone.

Let \mathcal{I} be an ideal on ω . Recall that \mathcal{I} is *dense* (or tall) if every infinite set $A \subseteq \omega$ contains an infinite subset B that belongs to \mathcal{I} .

Definition

Let \mathcal{A} , \mathcal{B} be sets of subsets of ω . We say that \mathcal{B} is \mathcal{A} -dense if for each $A \in \mathcal{A}$, there exists an infinite $B \subseteq A$ such that $B \in \mathcal{B}$.

Evidently, \mathcal{I} being $[\omega]^{\omega}$ -dense coincides with \mathcal{I} being dense. In addition, for any ideal \mathcal{I} , \mathcal{I}^+ is $[\omega]^{\omega}$ -dense if, and only if $\mathcal{I} = Fin$.

Let \mathcal{I} be an ideal on ω . Recall that \mathcal{I} is *dense* (or tall) if every infinite set $A \subseteq \omega$ contains an infinite subset B that belongs to \mathcal{I} .

Definition

Let \mathcal{A} , \mathcal{B} be sets of subsets of ω . We say that \mathcal{B} is \mathcal{A} -dense if for each $A \in \mathcal{A}$, there exists an infinite $B \subseteq A$ such that $B \in \mathcal{B}$.

Evidently, \mathcal{I} being $[\omega]^{\omega}$ -dense coincides with \mathcal{I} being dense. In addition, for any ideal \mathcal{I} , \mathcal{I}^+ is $[\omega]^{\omega}$ -dense if, and only if $\mathcal{I} = Fin$.

Let \mathcal{I} be an ideal on ω . Recall that \mathcal{I} is *dense* (or tall) if every infinite set $A \subseteq \omega$ contains an infinite subset B that belongs to \mathcal{I} .

Definition

Let \mathcal{A} , \mathcal{B} be sets of subsets of ω . We say that \mathcal{B} is \mathcal{A} -dense if for each $A \in \mathcal{A}$, there exists an infinite $B \subseteq A$ such that $B \in \mathcal{B}$.

Evidently, \mathcal{I} being $[\omega]^{\omega}$ -dense coincides with \mathcal{I} being dense. In addition, for any ideal \mathcal{I} , \mathcal{I}^+ is $[\omega]^{\omega}$ -dense if, and only if $\mathcal{I} = Fin$.

Introduction Introduction $(\mathcal{I}, \mathcal{J})$ -splitting family and $(\mathcal{I}, \mathcal{J})$ -l Ideals on ω Combinational ideals Ideals with combinational production

Ideals with combinational properties

Let \mathcal{I}, \mathcal{J} be ideals on ω . For a map $\varphi : \omega \to \omega$, the image of \mathcal{J} is defined by

$$\varphi(\mathcal{J}) = \{A \subseteq \omega : \varphi^{-1}(A) \in \mathcal{J}\}.$$

Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\omega \notin \varphi(\mathcal{J})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal.

Definition

Let \mathcal{I} , \mathcal{J} be ideals on ω ,

- $\mathcal{I} \leq_K \mathcal{J}$ if there is a function $\varphi : \omega \to \omega$ such that $\mathcal{I} \subseteq \varphi(\mathcal{J})$, i.e, $\varphi^{-1}(A) \in \mathcal{J}$ for any $A \in \mathcal{I}$;
- $\mathcal{I} \leq_{KB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \omega \to \omega$ such that $\mathcal{I} \leq_{K} \mathcal{J}$;
- $\mathcal{I} \leq_{RB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \omega \to \omega$ such that $A \in \mathcal{I}$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$;

Introduction Introduction $(\mathcal{I}, \mathcal{J})$ -splitting family and $(\mathcal{I}, \mathcal{J})$ -l Ideals on ω Combinational ideals Ideals with combinational production

Ideals with combinational properties

Let \mathcal{I}, \mathcal{J} be ideals on ω . For a map $\varphi : \omega \to \omega$, the image of \mathcal{J} is defined by

$$\varphi(\mathcal{J}) = \{ A \subseteq \omega : \varphi^{-1}(A) \in \mathcal{J} \}.$$

Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\omega \notin \varphi(\mathcal{J})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal.

Definition

Let \mathcal{I} , \mathcal{J} be ideals on ω ,

- $\mathcal{I} \leq_K \mathcal{J}$ if there is a function $\varphi : \omega \to \omega$ such that $\mathcal{I} \subseteq \varphi(\mathcal{J})$, i.e, $\varphi^{-1}(A) \in \mathcal{J}$ for any $A \in \mathcal{I}$;
- $\mathcal{I} \leq_{KB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \omega \to \omega$ such that $\mathcal{I} \leq_{K} \mathcal{J}$;
- $\mathcal{I} \leq_{RB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \omega \to \omega$ such that $A \in \mathcal{I}$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$;

Let \mathcal{I}, \mathcal{J} be ideals on ω . For a map $\varphi : \omega \to \omega$, the image of \mathcal{J} is defined by

$$\varphi(\mathcal{J}) = \{ A \subseteq \omega : \varphi^{-1}(A) \in \mathcal{J} \}.$$

Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\omega \notin \varphi(\mathcal{J})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal.

Definition

Let \mathcal{I} , \mathcal{J} be ideals on ω ,

- $\mathcal{I} \leq_K \mathcal{J}$ if there is a function $\varphi : \omega \to \omega$ such that $\mathcal{I} \subseteq \varphi(\mathcal{J})$, i.e, $\varphi^{-1}(A) \in \mathcal{J}$ for any $A \in \mathcal{I}$;
- $\mathcal{I} \leq_{KB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \omega \to \omega$ such that $\mathcal{I} \leq_K \mathcal{J}$;
- $\mathcal{I} \leq_{RB} \mathcal{J}$ if there is a finite-to-one function $\varphi : \omega \to \omega$ such that $A \in \mathcal{I}$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$;

Let \mathcal{I} be an ideal on ω , and X being a topological space. For sequence $\langle x_n : n \in \omega \rangle$ in X, we say that $\langle x_n : n \in \omega \rangle$ is \mathcal{I} -convergent to l if for each open neighborhood U of l,

$$\{n: x_n \notin U\} \in \mathcal{I}.$$

The notion of \mathcal{I} -convergence is a generalization of the classical one. It was first considered by Steinhaus and Fast in the case of the ideal of sets of statistical density 0:

$$\mathcal{I}_d = \{ A \subset \omega : limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \}.$$

Let \mathcal{I} be an ideal on ω , and X being a topological space. For sequence $\langle x_n : n \in \omega \rangle$ in X, we say that $\langle x_n : n \in \omega \rangle$ is \mathcal{I} -convergent to l if for each open neighborhood U of l,

$$\{n: x_n \notin U\} \in \mathcal{I}.$$

The notion of \mathcal{I} -convergence is a generalization of the classical one. It was first considered by Steinhaus and Fast in the case of the ideal of sets of statistical density 0:

$$\mathcal{I}_d = \{ A \subset \omega : limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \}.$$

By an \mathcal{I} -subsequence of $\langle x_n : n \in \omega \rangle$ we means $\langle x_n : n \in A \rangle$ for some $A \notin \mathcal{I}$. Filipów, Mrożek, Recław and Szuca introduced the following notions.

Definition

Let \mathcal{I} be an ideal on ω , X being a topological space.

- (X, \mathcal{I}) satisfies BW if every sequence in X has \mathcal{I} -convergent \mathcal{I} -subsequence;
- (X, I) satisfies *FinBW* if every sequence in X has convergent I-subsequence;

A (1) > (1) > (1)

By an \mathcal{I} -subsequence of $\langle x_n : n \in \omega \rangle$ we means $\langle x_n : n \in A \rangle$ for some $A \notin \mathcal{I}$. Filipów, Mrożek, Recław and Szuca introduced the following notions.

Definition

Let \mathcal{I} be an ideal on ω , X being a topological space.

- (X, \mathcal{I}) satisfies BW if every sequence in X has \mathcal{I} -convergent \mathcal{I} -subsequence;
- (X, \mathcal{I}) satisfies FinBW if every sequence in X has convergent \mathcal{I} -subsequence;

What will we consider?

We mainly consider the following questions:

Question

These notions involve two ideals: \mathcal{I} and Fin. We are interested in the question how about if we replace Fin by another ideal \mathcal{J} ?

Here is the key definition, which is a common generalization of these types.

Definition

Let \mathcal{I} , \mathcal{J} be ideals on ω , X being a topological space. We say that X has $(\mathcal{I}, \mathcal{J})$ -BW property if every sequence in X has \mathcal{J} -convergent \mathcal{I} -subsequence.

It is worthy to point out that if $\mathcal{I} \not\subseteq \mathcal{J}$, then for arbitrary space X, it has $(\mathcal{J}, \mathcal{I})$ -BW property. Indeed, picking $A \in \mathcal{I} \setminus \mathcal{J}$, A can deal with any sequence in X.

What will we consider?

We mainly consider the following questions:

Question

These notions involve two ideals: \mathcal{I} and Fin. We are interested in the question how about if we replace Fin by another ideal \mathcal{J} ?

Here is the key definition, which is a common generalization of these types.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω, X being a topological space. We say that X has $(\mathcal{I}, \mathcal{J})$ -BW property if every sequence in X has \mathcal{J} -convergent \mathcal{I} -subsequence.

It is worthy to point out that if $\mathcal{I} \not\subseteq \mathcal{J}$, then for arbitrary space X, it has $(\mathcal{J}, \mathcal{I})$ -BW property. Indeed, picking $A \in \mathcal{I} \setminus \mathcal{J}$, A can deal with any sequence in X.

What will we consider?

We mainly consider the following questions:

Question

These notions involve two ideals: \mathcal{I} and Fin. We are interested in the question how about if we replace Fin by another ideal \mathcal{J} ?

Here is the key definition, which is a common generalization of these types.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω, X being a topological space. We say that X has $(\mathcal{I}, \mathcal{J})$ -BW property if every sequence in X has \mathcal{J} -convergent \mathcal{I} -subsequence.

It is worthy to point out that if $\mathcal{I} \not\subseteq \mathcal{J}$, then for arbitrary space X, it has $(\mathcal{J}, \mathcal{I})$ -BW property. Indeed, picking $A \in \mathcal{I} \setminus \mathcal{J}$, A can deal with any sequence in X.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω , and $\mathcal{S} \subset [\omega]^{\omega}$. We say that \mathcal{S} is an $(\mathcal{I}, \mathcal{J})$ -splitting family if for every $A \in \mathcal{I}^+$ there exists $X \in \mathcal{S}$ such that both of $A \cap X$ and $A \setminus X$ belong to \mathcal{J}^+ .

Evidently, when \mathcal{I} is equal to \mathcal{J} , the $(\mathcal{I}, \mathcal{J})$ -splitting family coincides with the \mathcal{I} -splitting family:

Definition

Let $S \subseteq [\omega]^{\omega}$, and \mathcal{I} being an ideal on ω . A family S is \mathcal{I} -splitting if for every $A \in \mathcal{I}^+$ there exists $S \in S$ such that $A \cap S \in \mathcal{I}^+$ and $A \setminus S \in \mathcal{I}^+$.

< ロ > < 同 > < 三 > < 三 >

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω , and $\mathcal{S} \subset [\omega]^{\omega}$. We say that \mathcal{S} is an $(\mathcal{I}, \mathcal{J})$ -splitting family if for every $A \in \mathcal{I}^+$ there exists $X \in \mathcal{S}$ such that both of $A \cap X$ and $A \setminus X$ belong to \mathcal{J}^+ .

Evidently, when $\mathcal I$ is equal to $\mathcal J$, the $(\mathcal I,\mathcal J)\text{-splitting family coincides with the }\mathcal I\text{-splitting family:}$

Definition

Let $S \subseteq [\omega]^{\omega}$, and \mathcal{I} being an ideal on ω . A family S is \mathcal{I} -splitting if for every $A \in \mathcal{I}^+$ there exists $S \in S$ such that $A \cap S \in \mathcal{I}^+$ and $A \setminus S \in \mathcal{I}^+$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $\mathfrak{s}(\mathcal{I}, \mathcal{J})$ be the smallest cardinality of an $(\mathcal{I}, \mathcal{J})$ -splitting family.

It is easy to see that the $\mathfrak{s}(Fin, Fin)$ is just the *splitting number* \mathfrak{s} introduced and $\mathfrak{s}(\mathcal{I}, \mathcal{I})$ is just $\mathfrak{s}(\mathcal{I})$.

Theorem (Filipów, Mrożek, Recław and Szuca)

 ${\mathcal I}$ satisfies BW if, and only if ${\mathfrak s}({\mathcal I}) > \omega$

・ 一 マ ト ・ 日 ト ・

Definition

Let $\mathfrak{s}(\mathcal{I},\mathcal{J})$ be the smallest cardinality of an $(\mathcal{I},\mathcal{J})\text{-splitting family.}$

It is easy to see that the $\mathfrak{s}(Fin, Fin)$ is just the *splitting number* \mathfrak{s} introduced and $\mathfrak{s}(\mathcal{I}, \mathcal{I})$ is just $\mathfrak{s}(\mathcal{I})$.

Theorem (Filipów, Mrożek, Recław and Szuca)

 ${\mathcal I}$ satisfies BW if, and only if ${\mathfrak s}({\mathcal I}) > \omega$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

Let $\mathfrak{s}(\mathcal{I}, \mathcal{J})$ be the smallest cardinality of an $(\mathcal{I}, \mathcal{J})$ -splitting family.

It is easy to see that the $\mathfrak{s}(Fin, Fin)$ is just the *splitting number* \mathfrak{s} introduced and $\mathfrak{s}(\mathcal{I}, \mathcal{I})$ is just $\mathfrak{s}(\mathcal{I})$.

Theorem (Filipów, Mrożek, Recław and Szuca)

 ${\mathcal I}$ satisfies BW if, and only if $\mathfrak{s}({\mathcal I}) > \omega$

・ 一 マ ト ・ 日 ト ・

$(\mathcal{I},\mathcal{J})$ -small set

Let $r \in \omega$, $s \in r^n$ and $i \in \{0, \dots, r-1\}$, by $s \frown i$ we mean the sequence of length n+1 (write lh(s) = n+1) which extends s by i. If $x \in r^{\omega}$ and $n \in \omega$, x|n denotes the initial segment $x|n = \langle x(0), x(1), \dots, x(n-1) \rangle$.

Definition

Let \mathcal{I} , \mathcal{J} be ideals on ω . $A \subset \omega$ is called an $(\mathcal{I}, \mathcal{J})$ -small set if there exists $r \in \omega$, and exists a family $\{A_s : s \in r^{<\omega}\}$ such that for all $s \in r^{<\omega}$, we have

$$\begin{array}{l} S_1 \ A_{\emptyset} = A, \\ S_2 \ A_s = A_{s \frown 0} \cup \dots \cup A_{s \frown (r-1)}, \\ S_3 \ A_{s \frown i} \cap A_{s \frown j} = \emptyset \text{ for every } i \neq j, \\ S_4 \ \text{for every } b \in r^{\omega}, \text{ every } X \subset \omega, \text{ if } X \setminus A_{b|n} \in \mathcal{I} \text{ for each} \\ n \in \omega, \text{ then } X \in \mathcal{J}. \end{array}$$

・ロト ・(型ト ・ヨト ・ヨト

$(\mathcal{I},\mathcal{J})$ -small set

Let $r \in \omega$, $s \in r^n$ and $i \in \{0, \dots, r-1\}$, by $s \frown i$ we mean the sequence of length n+1 (write lh(s) = n+1) which extends s by i. If $x \in r^{\omega}$ and $n \in \omega$, x|n denotes the initial segment $x|n = \langle x(0), x(1), \dots, x(n-1) \rangle$.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω . $A \subset \omega$ is called an $(\mathcal{I}, \mathcal{J})$ -small set if there exists $r \in \omega$, and exists a family $\{A_s : s \in r^{<\omega}\}$ such that for all $s \in r^{<\omega}$, we have

$$\begin{array}{l} S_1 \ A_{\emptyset} = A, \\ S_2 \ A_s = A_{s \frown 0} \cup \dots \cup A_{s \frown (r-1)}, \\ S_3 \ A_{s \frown i} \cap A_{s \frown j} = \emptyset \text{ for every } i \neq j, \\ S_4 \ \text{for every } b \in r^{\omega}, \text{ every } X \subset \omega, \text{ if } X \setminus A_{b|n} \in \mathcal{I} \text{ for each} \\ n \in \omega, \text{ then } X \in \mathcal{J}. \end{array}$$

- 4 同 1 4 三 1 4 三 1

$(\mathcal{I},\mathcal{J})$ -small set

Definition

Let $\mathcal{S}_{(\mathcal{I},\mathcal{J})}$ denote all $(\mathcal{I},\mathcal{J})$ -small sets in $\mathcal{P}(\omega)$.

Note that $S_{(\mathcal{I},\mathcal{J})} \neq \emptyset$ if, and only if $\mathcal{I} \subseteq \mathcal{J} \subseteq S_{(\mathcal{I},\mathcal{J})}$.

э
$(\mathcal{I},\mathcal{J})$ -small set

Definition

Let $\mathcal{S}_{(\mathcal{I},\mathcal{J})}$ denote all $(\mathcal{I},\mathcal{J})$ -small sets in $\mathcal{P}(\omega)$.

Note that $\mathcal{S}_{(\mathcal{I},\mathcal{J})} \neq \emptyset$ if, and only if $\mathcal{I} \subseteq \mathcal{J} \subseteq \mathcal{S}_{(\mathcal{I},\mathcal{J})}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

$(\mathcal{I},\mathcal{J})$ -small set

Definition

Let $\mathcal{S}_{(\mathcal{I},\mathcal{J})}$ denote all $(\mathcal{I},\mathcal{J})$ -small sets in $\mathcal{P}(\omega)$.

Note that $\mathcal{S}_{(\mathcal{I},\mathcal{J})} \neq \emptyset$ if, and only if $\mathcal{I} \subseteq \mathcal{J} \subseteq \mathcal{S}_{(\mathcal{I},\mathcal{J})}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Introduction Introduction $(\mathcal{I},\mathcal{J})$ -splitting family and $(\mathcal{I},\mathcal{J})$ -l Tools

Our results and these sketch of proofs

Theorem

 $\omega \notin S_{(\mathcal{I},\mathcal{J})}$ if, and only if [0,1] satisfies $(\mathcal{J},\mathcal{I})$ -BW.

< 同 ト < 三 ト < 三 ト

э

The key fact:

Lemma

 $(\mathcal{J},\mathcal{I})\text{-}BW$ property is preserved for closed subsets and continuous images.

Thus, we consider the Cantor space 2^{ω} instead of [0, 1]. Assume that $\omega \notin S_{(\mathcal{I}, \mathcal{J})}$. For every sequence $\langle x_n : n \in \omega \rangle$ in 2^{ω} , every $s \in 2^{<\omega}$, put

$$A_s = \{n : s \subset x_n\}.$$

Then $\{A_s : s \in 2^{<\omega}\}$ satisfies $S_1 - S_3$. Since $\omega \notin S_{(\mathcal{I},\mathcal{J})}$, by the condition S_4 , there exists $X \notin \mathcal{J}$ and $b \in 2^{\omega}$ such that $X \setminus A_{b|n} \in \mathcal{I}$ for each $n \in \omega$. Then $\langle x_n : n \in X \rangle$ is \mathcal{I} -convergent to b.

A (10) A (10) A (10)

The key fact:

Lemma

 $(\mathcal{J},\mathcal{I})$ -BW property is preserved for closed subsets and continuous images.

Thus, we consider the Cantor space 2^{ω} instead of [0,1]. Assume that $\omega \notin S_{(\mathcal{I},\mathcal{J})}$. For every sequence $\langle x_n : n \in \omega \rangle$ in 2^{ω} , every $s \in 2^{<\omega}$, put

$$A_s = \{n : s \subset x_n\}.$$

Then $\{A_s : s \in 2^{\leq \omega}\}$ satisfies $S_1 - S_3$. Since $\omega \notin S_{(\mathcal{I},\mathcal{J})}$, by the condition S_4 , there exists $X \notin \mathcal{J}$ and $b \in 2^{\omega}$ such that $X \setminus A_{b|n} \in \mathcal{I}$ for each $n \in \omega$. Then $\langle x_n : n \in X \rangle$ is \mathcal{I} -convergent to b.

- 4 周 ト 4 戸 ト 4 戸 ト

The key fact:

Lemma

 $(\mathcal{J},\mathcal{I})$ -BW property is preserved for closed subsets and continuous images.

Thus, we consider the Cantor space 2^{ω} instead of [0,1]. Assume that $\omega \notin S_{(\mathcal{I},\mathcal{J})}$. For every sequence $\langle x_n : n \in \omega \rangle$ in 2^{ω} , every $s \in 2^{<\omega}$, put

$$A_s = \{n : s \subset x_n\}.$$

Then $\{A_s : s \in 2^{<\omega}\}$ satisfies $S_1 - S_3$. Since $\omega \notin S_{(\mathcal{I},\mathcal{J})}$, by the condition S_4 , there exists $X \notin \mathcal{J}$ and $b \in 2^{\omega}$ such that $X \setminus A_{b|n} \in \mathcal{I}$ for each $n \in \omega$. Then $\langle x_n : n \in X \rangle$ is \mathcal{I} -convergent to b.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose that $\omega \in S_{(\mathcal{I},\mathcal{J})}$. So there exists $r \in \omega$, $\{A_s : s \in r^{<\omega}\}$ such that the conditions S_1 - S_4 are fulfilled. Note that for each $n \in \omega$, there is exactly one $x_n \in 2^{\omega}$ such that $n \in A_{x_n|l}$ for each $l \in \omega$. Then we obtain a sequence $\langle x_n : n \in \omega \rangle$ in 2^{ω} . Since 2^{ω} satisfies $(\mathcal{J},\mathcal{I})$ -BW, the sequence has an \mathcal{I} -convergent \mathcal{J} -subsequence, namely, there is a $x \in 2^{\omega}$ and $X \subseteq \omega$ with $X \in \mathcal{J}^+$ such that $\langle x_n : n \in X \rangle$ is \mathcal{I} -convergent to x. Since for each $l \in \omega$

$$X \setminus A_{x|l} \subseteq \{n \in X : |x - x_n| \ge \frac{1}{2^l}\} \in \mathcal{I}.$$

By the condition S_4 , $X \in \mathcal{J}$, but this contradicts the fact that $X \in \mathcal{J}^+$. Therefore, we complete the proof.

Theorem

Let \mathcal{I} , \mathcal{J} be ideals on ω with $\mathcal{J} \subseteq \mathcal{I}$. In the following list of conditions each implies the next.

- ₹ 🖬 🕨

 $(1) \Rightarrow (2)$ Suppose that [0,1] does not have $(\mathcal{I},\mathcal{J})\text{-}BW$. By Theorem 3.4, ω is a $(\mathcal{J},\mathcal{I})\text{-small set.}$ We may assume that there exists a $r \in \omega$, and a family $\{A_s : s \in r^{<\omega}\}$ such that the conditions $S_1 - S_3$ are fulfilled. In what follows we will show that $\{A_s : s \in r^{<\omega}\}$ is an $(\mathcal{I},\mathcal{J})\text{-splitting family.}$ For the sake of contradiction, suppose that there is $X \in \mathcal{I}^+$ such that for every $s \in r^{<\omega}$ either $X \cap A_s \in \mathcal{J}$ or $X \setminus A_s \in \mathcal{J}$. Put

$$T = \{ s \in r^{<\omega} : X \setminus A_s \in \mathcal{J} \}.$$

Then T is a tree on $\{0, \dots, r-1\}$ with finite branches for every level. In order to see that T is an infinite tree, we need the following lemma:

Lemma For any $n \in \omega$, there is $s \in r^n$ such that $X \setminus A_s \in \mathcal{J}$.

 $(1) \Rightarrow (2)$ Suppose that [0,1] does not have $(\mathcal{I},\mathcal{J})\text{-}BW$. By Theorem 3.4, ω is a $(\mathcal{J},\mathcal{I})\text{-small set.}$ We may assume that there exists a $r \in \omega$, and a family $\{A_s : s \in r^{<\omega}\}$ such that the conditions $S_1 - S_3$ are fulfilled. In what follows we will show that $\{A_s : s \in r^{<\omega}\}$ is an $(\mathcal{I},\mathcal{J})\text{-splitting family.}$ For the sake of contradiction, suppose that there is $X \in \mathcal{I}^+$ such that for every $s \in r^{<\omega}$ either $X \cap A_s \in \mathcal{J}$ or $X \setminus A_s \in \mathcal{J}$. Put

$$T = \{ s \in r^{<\omega} : X \setminus A_s \in \mathcal{J} \}.$$

Then T is a tree on $\{0, \dots, r-1\}$ with finite branches for every level. In order to see that T is an infinite tree, we need the following lemma:

Lemma

For any $n \in \omega$, there is $s \in r^n$ such that $X \setminus A_s \in \mathcal{J}$.

() < </p>

Since T is an infinite tree with finite branches, by König's lemma, there exists $b \in r^{\omega}$ such that $X \setminus A_{b|n} \in \mathcal{J}$ for every $n \in \omega$. According to the fact that ω is an $(\mathcal{J}, \mathcal{I})$ -small set we have that $X \in \mathcal{I}$. Contradiction.

(2) \Rightarrow (3) Suppose that $\mathfrak{s}(\mathcal{J}, \mathcal{I}) = \omega$, and $\{S_n : n \in \omega\}$ be a $(\mathcal{J}, \mathcal{I})$ -splitting family. We will construct a family $\{A_s : s \in 2^{<\omega}\}$ which verifies $\omega \in S_{(\mathcal{J}, \mathcal{I})}$ (this implies that [0, 1] does not have $(\mathcal{I}, \mathcal{J})$ -BW property).

伺 ト イ ヨ ト イ ヨ

Since T is an infinite tree with finite branches, by König's lemma, there exists $b \in r^{\omega}$ such that $X \setminus A_{b|n} \in \mathcal{J}$ for every $n \in \omega$. According to the fact that ω is an $(\mathcal{J}, \mathcal{I})$ -small set we have that $X \in \mathcal{I}$. Contradiction. $(2) \Rightarrow (3)$ Suppose that $\mathfrak{s}(\mathcal{J}, \mathcal{I}) = \omega$, and $\{S_n : n \in \omega\}$ be a $(\mathcal{J}, \mathcal{I})$ -splitting family. We will construct a family $\{A_s : s \in 2^{<\omega}\}$

which verifies $\omega \in S_{(\mathcal{J},\mathcal{I})}$ (this implies that [0,1] does not have $(\mathcal{I},\mathcal{J})$ -BW property).

First, take $A_{\emptyset}=\omega,$ and let n_{\emptyset} be the smallest n such that S_n splits $\omega.$ Put

$$A_0 = A_{\emptyset} \cap A_{n_{\emptyset}}$$
; $A_1 = A_{\emptyset} \setminus A_{n_{\emptyset}}$.

Then $A_0 \in \mathcal{I}^+$ and $A_1 \in \mathcal{I}^+$.

→ < ∃ →</p>

First, take $A_{\emptyset}=\omega,$ and let n_{\emptyset} be the smallest n such that S_n splits $\omega.$ Put

$$A_0 = A_{\emptyset} \cap A_{n_{\emptyset}}; A_1 = A_{\emptyset} \setminus A_{n_{\emptyset}}.$$

Then $A_0 \in \mathcal{I}^+$ and $A_1 \in \mathcal{I}^+$.

Suppose that we have already constructed A_s for all $s \in 2^n$. Then for each $s \in 2^n$, $A_s \in \mathcal{I}^+$. Let n_s be the smallest n such that S_n splits A_s . Put

 $A_{s\frown 0} = A_s \cap S_{n_s}, \ A_{s\frown 1} = A_s \setminus S_{n_s}.$

Suppose that we have already constructed A_s for all $s \in 2^n$. Then for each $s \in 2^n$, $A_s \in \mathcal{I}^+$. Let n_s be the smallest n such that S_n splits A_s . Put

$$A_{s\frown 0} = A_s \cap S_{n_s}, \ A_{s\frown 1} = A_s \setminus S_{n_s}.$$

Suppose that we have already constructed A_s for all $s \in 2^n$. Then for each $s \in 2^n$, $A_s \in \mathcal{I}^+$. Let n_s be the smallest n such that S_n splits A_s . Put

$$A_{s\frown 0} = A_s \cap S_{n_s}, \ A_{s\frown 1} = A_s \setminus S_{n_s}.$$

According to the definition of $(\mathcal{J}, \mathcal{I})$ -splitting family, both of $A_{s \sim 0}$ and $A_{s \frown 1}$ are in \mathcal{I}^+ . This allows us to keep this proceed going and then we finish our construction. Clearly, the family $\{A_s : s \in 2^{<\omega}\}$ satisfies $S_1 - S_3$, it is enough to show that this family also satisfies the condition S_4 . For every $b \in 2^{\omega}$, every $X \subset \omega$ with $X \setminus A_{b|n} \in \mathcal{J}$ for every $n \in \omega$. Suppose that $X \in \mathcal{I}^+$. Let n_X be the smallest n such that S_n splits X. Since $X \setminus A_{b|n} \in \mathcal{J}$ for every $n \in \omega$, so S_{n_X} splits $A_{b|n}$ for every $n \in \omega$. Hence, there is $k \leq n_X$ such that $S_{n_{blk}} = S_{n_X}$. Then either $A_{blk+1} = A_{blk} \cap S_{n_X}$ or $A_{b|k+1} = A_{b|k} \setminus S_{n_x}$. This implies that S_{n_x} does not split $A_{b|k+1}$, which is a contradiction. Therefore, the family $\{A_s : s \in 2^{<\omega}\}$ also satisfies S_4 .

Our results

Theorem

Let \mathcal{I} , \mathcal{J} be ideals on ω , then the following conditions are equivalent:

(1) $(\mathcal{I}, \mathcal{J})$ is Ramsey^{*},

(2) $(\mathcal{I}, \mathcal{J})$ is Mon^* ,

(3) [0,1] has (I, J)-BW.

• • = • • = •

 $(1)\Rightarrow(2)$ Let $\langle x_n:n\in\omega\rangle$ be a sequence in [0,1], define a coloring $c\colon [\omega]^2\to\{0,1\}$ by

 $c(\{n,m\})=0$ if n < m and $x_n \leq x_m; \ c(\{n,m\})=1,$ otherwise.

Since $(\mathcal{I}, \mathcal{J})$ is $Ramsey^*$, there exists $A \in \mathcal{I}^+$ such that A is \mathcal{J} -homogeneous for c. So we may assume that for every $n \in A$,

 $\{m: c(\{n,m\})=1\} \in \mathcal{J}.$

Therefore, $\langle x_n : n \in A \rangle$ is \mathcal{J} -increasing.

伺 ト イ ヨ ト イ ヨ

 $(1)\Rightarrow(2)$ Let $\langle x_n:n\in\omega\rangle$ be a sequence in [0,1], define a coloring $c\colon [\omega]^2\to\{0,1\}$ by

 $c(\{n,m\})=0$ if n < m and $x_n \leq x_m; \ c(\{n,m\})=1,$ otherwise.

Since $(\mathcal{I}, \mathcal{J})$ is $Ramsey^*$, there exists $A \in \mathcal{I}^+$ such that A is \mathcal{J} -homogeneous for c. So we may assume that for every $n \in A$,

 $\{m: c(\{n,m\})=1\} \in \mathcal{J}.$

Therefore, $\langle x_n : n \in A \rangle$ is \mathcal{J} -increasing.

 $(1)\Rightarrow(2)$ Let $\langle x_n:n\in\omega\rangle$ be a sequence in [0,1], define a coloring $c\colon [\omega]^2\to\{0,1\}$ by

 $c(\{n,m\})=0$ if n < m and $x_n \leq x_m; \ c(\{n,m\})=1,$ otherwise.

Since $(\mathcal{I}, \mathcal{J})$ is $Ramsey^*$, there exists $A \in \mathcal{I}^+$ such that A is \mathcal{J} -homogeneous for c. So we may assume that for every $n \in A$,

$$\{m: c(\{n,m\})=1\} \in \mathcal{J}.$$

Therefore, $\langle x_n : n \in A \rangle$ is \mathcal{J} -increasing.

$$(1)\Rightarrow(2)$$
 Let $\langle x_n:n\in\omega\rangle$ be a sequence in $[0,1],$ define a coloring $c\colon [\omega]^2\to\{0,1\}$ by

$$c(\{n,m\}) = 0$$
 if $n < m$ and $x_n \le x_m$; $c(\{n,m\}) = 1$, otherwise.

Since $(\mathcal{I}, \mathcal{J})$ is $Ramsey^*$, there exists $A \in \mathcal{I}^+$ such that A is \mathcal{J} -homogeneous for c. So we may assume that for every $n \in A$,

$$\{m: c(\{n,m\})=1\} \in \mathcal{J}.$$

Therefore, $\langle x_n : n \in A \rangle$ is \mathcal{J} -increasing.

$(2) \Rightarrow (3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon^* .

For a given sequence $\langle x_n : n \in \omega \rangle$ in [0, 1], there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone. We may assume that $\langle x_n : n \in A \rangle$ is \mathcal{J} -nondecreasing. Let

 $x = \sup_{n \in A} x_n.$

For any $\varepsilon > 0$, there is $x_N \in A$ such that $x_N > x - \varepsilon$. Then

 $\{n \in A : |x_n - x| \ge \varepsilon\} \subseteq \{n \in A : x_N > x_n\} \in \mathcal{J}.$

Thus, $\langle x_n : n \in A \rangle$ is \mathcal{J} -convergent to x.

A (1) < A (1) < A (1) < A (1) </p>

 $(2) \Rightarrow (3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon^* . For a given sequence $\langle x_n : n \in \omega \rangle$ in [0, 1], there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone.

 $x = \sup_{n \in A} x_n.$

For any $\varepsilon > 0$, there is $x_N \in A$ such that $x_N > x - \varepsilon$. Then

 $\{n \in A : |x_n - x| \ge \varepsilon\} \subseteq \{n \in A : x_N > x_n\} \in \mathcal{J}.$

Thus, $\langle x_n : n \in A \rangle$ is \mathcal{J} -convergent to x.

A (1) > A (2) > A

 $(2) \Rightarrow (3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon^* . For a given sequence $\langle x_n : n \in \omega \rangle$ in [0, 1], there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone. We may assume that $\langle x_n : n \in A \rangle$ is \mathcal{J} -nondecreasing. Let

 $x = \sup_{n \in A} x_n.$

For any $\varepsilon > 0$, there is $x_N \in A$ such that $x_N > x - \varepsilon$. Then

 $\{n \in A : |x_n - x| \ge \varepsilon\} \subseteq \{n \in A : x_N > x_n\} \in \mathcal{J}.$

Thus, $\langle x_n : n \in A \rangle$ is \mathcal{J} -convergent to x.

・ 同 ト ・ ヨ ト ・ ヨ

 $(2) \Rightarrow (3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon^* . For a given sequence $\langle x_n : n \in \omega \rangle$ in [0, 1], there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone. We may assume that $\langle x_n : n \in A \rangle$ is \mathcal{J} -nondecreasing. Let

 $x = \sup_{n \in A} x_n.$

For any $\varepsilon > 0$, there is $x_N \in A$ such that $x_N > x - \varepsilon$. Then

 $\{n \in A : |x_n - x| \ge \varepsilon\} \subseteq \{n \in A : x_N > x_n\} \in \mathcal{J}.$

Thus, $\langle x_n : n \in A \rangle$ is \mathcal{J} -convergent to x.

・ 同 ト ・ ヨ ト ・ ヨ

 $(2) \Rightarrow (3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon^* . For a given sequence $\langle x_n : n \in \omega \rangle$ in [0, 1], there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone. We may assume that $\langle x_n : n \in A \rangle$ is \mathcal{J} -nondecreasing. Let

 $x = \sup_{n \in A} x_n.$

For any $\varepsilon > 0$, there is $x_N \in A$ such that $x_N > x - \varepsilon$. Then

$$\{n \in A : |x_n - x| \ge \varepsilon\} \subseteq \{n \in A : x_N > x_n\} \in \mathcal{J}.$$

Thus, $\langle x_n : n \in A \rangle$ is \mathcal{J} -convergent to x.

 $(2) \Rightarrow (3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon^* . For a given sequence $\langle x_n : n \in \omega \rangle$ in [0, 1], there exists $A \in \mathcal{I}^+$ such that $\langle x_n : n \in A \rangle$ is \mathcal{J} -monotone. We may assume that $\langle x_n : n \in A \rangle$ is \mathcal{J} -nondecreasing. Let

 $x = \sup_{n \in A} x_n.$

For any $\varepsilon > 0$, there is $x_N \in A$ such that $x_N > x - \varepsilon$. Then

$$\{n \in A : |x_n - x| \ge \varepsilon\} \subseteq \{n \in A : x_N > x_n\} \in \mathcal{J}.$$

Thus, $\langle x_n : n \in A \rangle$ is \mathcal{J} -convergent to x.

 $(3) \Rightarrow (1)$ Let $r \in \omega$, and $c: [\omega]^2 \rightarrow \{0, \cdots, r-1\}$ being a coloring of $[\omega]^2$.

We shall define a family $\{A_s:s\in r^{<\omega}\}$ that satisfies $S_1\text{-}S_3$ as follows

• $A_{\emptyset} = \omega$,

• $A_{s \frown i} = \{n \in A_s : c(lh(s \frown i), n) = i\}, i \in \{0, \cdots, r-1\}.$

Note that [0,1] has $(\mathcal{I},\mathcal{J})$ -BW, so ω is not a $(\mathcal{J},\mathcal{I})$ -small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in \{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^+$ such that x(k-1) = i for every $k \in C$. It is not hard to see that for every $n \in C$,

$$\{k \in C : c(\{n,k\}) \neq i\} \subseteq C \setminus A_{x|n} \in \mathcal{J}.$$

This implies that C is \mathcal{J} -homogeneous as desired

• • • • • • • • • • • •

 $\begin{array}{l} (3) \Rightarrow (1) \mbox{ Let } r \in \omega, \mbox{ and } c \colon [\omega]^2 \rightarrow \{0, \cdots, r-1\} \mbox{ being a coloring of } [\omega]^2. \\ \mbox{ We shall define a family } \{A_s : s \in r^{<\omega}\} \mbox{ that satisfies } S_1 \mbox{-} S_3 \mbox{ as follows} \end{array}$

- $A_{\emptyset} = \omega$,
- $A_{s \frown i} = \{n \in A_s : c(lh(s \frown i), n) = i\}, i \in \{0, \cdots, r-1\}.$

Note that [0,1] has $(\mathcal{I},\mathcal{J})$ -BW, so ω is not a $(\mathcal{J},\mathcal{I})$ -small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in \{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^+$ such that x(k-1) = i for every $k \in C$. It is not hard to see that for every $n \in C$,

$$\{k \in C : c(\{n,k\}) \neq i\} \subseteq C \setminus A_{x|n} \in \mathcal{J}.$$

This implies that C is $\mathcal J$ -homogeneous as desired.

イロト イヨト イヨト イヨ

 $(3) \Rightarrow (1)$ Let $r \in \omega$, and $c: \ [\omega]^2 \rightarrow \{0, \cdots, r-1\}$ being a coloring of $[\omega]^2$. We shall define a family $\{A_s : s \in r^{<\omega}\}$ that satisfies S_1 - S_3 as follows

• $A_{\emptyset} = \omega$,

•
$$A_{s \frown i} = \{n \in A_s : c(lh(s \frown i), n) = i\}, i \in \{0, \cdots, r-1\}.$$

Note that [0,1] has $(\mathcal{I},\mathcal{J})$ -BW, so ω is not a $(\mathcal{J},\mathcal{I})$ -small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in \{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^+$ such that x(k-1) = i for every $k \in C$. It is not hard to see that for every $n \in C$,

$$\{k \in C : c(\{n,k\}) \neq i\} \subseteq C \setminus A_{x|n} \in \mathcal{J}.$$

This implies that C is $\mathcal J$ -homogeneous as desired.

 $(3) \Rightarrow (1)$ Let $r \in \omega$, and $c: \ [\omega]^2 \rightarrow \{0, \cdots, r-1\}$ being a coloring of $[\omega]^2$. We shall define a family $\{A_s: s \in r^{<\omega}\}$ that satisfies S_1 - S_3 as follows

• $A_{\emptyset} = \omega$,

•
$$A_{s \frown i} = \{n \in A_s : c(lh(s \frown i), n) = i\}, i \in \{0, \cdots, r-1\}.$$

Note that [0,1] has $(\mathcal{I},\mathcal{J})$ -BW, so ω is not a $(\mathcal{J},\mathcal{I})$ -small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in \{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^+$ such that x(k-1) = i for every $k \in C$. It is not hard to see that for every $n \in C$,

$$\{k \in C : c(\{n,k\}) \neq i\} \subseteq C \setminus A_{x|n} \in \mathcal{J}.$$

This implies that C is $\mathcal J$ -homogeneous as desired

 $(3) \Rightarrow (1)$ Let $r \in \omega$, and $c: \ [\omega]^2 \rightarrow \{0, \cdots, r-1\}$ being a coloring of $[\omega]^2$. We shall define a family $\{A_s: s \in r^{<\omega}\}$ that satisfies S_1 - S_3 as follows

• $A_{\emptyset} = \omega$,

•
$$A_{s \frown i} = \{n \in A_s : c(lh(s \frown i), n) = i\}, i \in \{0, \cdots, r-1\}.$$

Note that [0,1] has $(\mathcal{I},\mathcal{J})$ -BW, so ω is not a $(\mathcal{J},\mathcal{I})$ -small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in \{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^+$ such that x(k-1) = i for every $k \in C$. It is not hard to see that for every $n \in C$,

$$\{k \in C : c(\{n,k\}) \neq i\} \subseteq C \setminus A_{x|n} \in \mathcal{J}.$$

This implies that C is \mathcal{J} -homogeneous as desired.

Our results

Theorem

Let \mathcal{I} , \mathcal{J} be ideals on ω such that $(\mathcal{I}, \mathcal{J})$ is weak selective. For the following conditions:

(1)
$$[0,1]$$
 has $(\mathcal{I},\mathcal{J})$ -BW;

(2) For every $r \in \omega$, every family $\{A_s : s \in r^{<\omega}\}$ fulfilling conditions S_1 - S_3 , there are $x \in r^{\omega}$ and $C \in \mathcal{J}^+$ such that $C \subseteq^* A_{x|n}$ for each $n \in \omega\}$.

(3)
$$[0,1]$$
 has $(\mathcal{J},\mathcal{I})$ -BW.

It holds that $(1) \Rightarrow (2) \Rightarrow (3)$.

(1) \Rightarrow (2) Note that [0,1] has $(\mathcal{I}, \mathcal{J})$ -BW implies that $\omega \notin S_{(\mathcal{J}, \mathcal{I})}$. So for every $r \in \omega$, every family $\{A_s : s \in r^{<\omega}\}$ fulfilling conditions S_1 - S_3 , there are $x \in r^{\omega}$ and $B \in \mathcal{I}^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for every $n \in \omega$.

It is easy to see that

 $B \setminus A_{x|1}, B \cap (A_{x|2} \setminus A_{x|1}), \cdots, B \cap (A_{x|n+1} \setminus A_{x|n}), \cdots$

is a partition of B into sets from \mathcal{J} . Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J}|B$ is locally selective. Thus, there exists $C \subset B$ with $C \in \mathcal{J}^+$ such that $|C \cap B \setminus A_{x|1}| \leq 1$, $|C \cap B \cap (A_{x|2} \setminus A_{x|n})| \leq 1$ for every $n \in \omega$. It is easy to check that the set C is desired.

イロト イポト イラト イラ

 $\begin{array}{l} (1) \Rightarrow (2) \text{ Note that } [0,1] \text{ has } (\mathcal{I},\mathcal{J})\text{-}\mathsf{BW} \text{ implies that } \omega \not\in \mathcal{S}_{(\mathcal{J},\mathcal{I})}.\\ \text{So for every } r \in \omega \text{, every family } \{A_s: s \in r^{<\omega}\} \text{ fulfilling conditions }\\ S_1\text{-}S_3 \text{, there are } x \in r^\omega \text{ and } B \in \mathcal{I}^+ \text{ such that } B \setminus A_{x|n} \in \mathcal{J} \text{ for every } n \in \omega. \end{array}$

It is easy to see that

 $B \setminus A_{x|1}, B \cap (A_{x|2} \setminus A_{x|1}), \cdots, B \cap (A_{x|n+1} \setminus A_{x|n}), \cdots$

is a partition of B into sets from \mathcal{J} . Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J}|B$ is locally selective. Thus, there exists $C \subset B$ with $C \in \mathcal{J}^+$ such that $|C \cap B \setminus A_{x|1}| \leq 1$, $|C \cap B \cap (A_{x|2} \setminus A_{x|n})| \leq 1$ for every $n \in \omega$. It is easy to check that the set C is desired.

イロト イポト イラト イラ
$\begin{array}{l} (1) \Rightarrow (2) \text{ Note that } [0,1] \text{ has } (\mathcal{I},\mathcal{J})\text{-}\mathsf{BW} \text{ implies that } \omega \not\in \mathcal{S}_{(\mathcal{J},\mathcal{I})}.\\ \text{So for every } r \in \omega, \text{ every family } \{A_s : s \in r^{<\omega}\} \text{ fulfilling conditions }\\ S_1\text{-}S_3, \text{ there are } x \in r^{\omega} \text{ and } B \in \mathcal{I}^+ \text{ such that } B \setminus A_{x|n} \in \mathcal{J} \text{ for every } n \in \omega.\\ \text{It is easy to see that} \end{array}$

 $B\setminus A_{x|1}$, $B\cap (A_{x|2}\setminus A_{x|1})$, \cdots , $B\cap (A_{x|n+1}\setminus A_{x|n})$, \cdots

is a partition of B into sets from \mathcal{J} .

Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J}|B$ is locally selective. Thus, there exists $C \subset B$ with $C \in \mathcal{J}^+$ such that $|C \cap B \setminus A_{x|1}| \leq 1$, $|C \cap B \cap (A_{x|2} \setminus A_{x|n})| \leq 1$ for every $n \in \omega$. It is easy to check that the set C is desired.

- 4 周 ト 4 ヨ ト 4 ヨ ト

 $(1) \Rightarrow (2)$ Note that [0,1] has $(\mathcal{I},\mathcal{J})$ -BW implies that $\omega \notin S_{(\mathcal{J},\mathcal{I})}$. So for every $r \in \omega$, every family $\{A_s : s \in r^{<\omega}\}$ fulfilling conditions S_1 - S_3 , there are $x \in r^{\omega}$ and $B \in \mathcal{I}^+$ such that $B \setminus A_{x|n} \in \mathcal{J}$ for every $n \in \omega$. It is every to see that

It is easy to see that

$$B\setminus A_{x|1}$$
, $B\cap (A_{x|2}\setminus A_{x|1})$, \cdots , $B\cap (A_{x|n+1}\setminus A_{x|n})$, \cdots

is a partition of B into sets from \mathcal{J} . Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J}|B$ is locally selective. Thus, there exists $C \subset B$ with $C \in \mathcal{J}^+$ such that $|C \cap B \setminus A_{x|1}| \leq 1$, $|C \cap B \cap (A_{x|2} \setminus A_{x|n})| \leq 1$ for every $n \in \omega$. It is easy to check that the set C is desired.

伺 ト イ ヨ ト イ ヨ

(2) \Rightarrow (3) It is enough to show that ω is not an $(\mathcal{I}, \mathcal{J})$ -small set. To this end, for every $r \in \omega$, for any family $\{A_s : s \in 2^{<\omega}\}$ satisfying S_1 - S_3 . By (2), there are $x \in r^{\omega}$ and $C \in \mathcal{J}^+$ such that for each $n \in \omega$, $C \setminus A_{x|n} \in Fin \subseteq \mathcal{I}$.

伺 ト イ ヨ ト イ ヨ

 $(2) \Rightarrow (3)$ It is enough to show that ω is not an $(\mathcal{I}, \mathcal{J})$ -small set. To this end, for every $r \in \omega$, for any family $\{A_s : s \in 2^{<\omega}\}$ satisfying S_1 - S_3 . By (2), there are $x \in r^{\omega}$ and $C \in \mathcal{J}^+$ such that for each $n \in \omega, C \setminus A_{x|n} \in Fin \subseteq \mathcal{I}$.

 $(2) \Rightarrow (3)$ It is enough to show that ω is not an $(\mathcal{I}, \mathcal{J})$ -small set. To this end, for every $r \in \omega$, for any family $\{A_s : s \in 2^{<\omega}\}$ satisfying S_1 - S_3 . By (2), there are $x \in r^{\omega}$ and $C \in \mathcal{J}^+$ such that for each $n \in \omega$, $C \setminus A_{x|n} \in Fin \subseteq \mathcal{I}$.

Our results

Definition

 \mathcal{I} is *h*-*Ramsey* (respectively, *h*-*Ramsey*^{*}) if for every $A \in \mathcal{I}^+$, $\mathcal{I}|A$ is Ramsey (respectively, $\mathcal{I}|A$ is *Ramsey*^{*}).

Theorem

Let \mathcal{I} , \mathcal{J} be ideals on ω and \mathcal{J} being a weak Q-ideals such that $\mathcal{I} \leq_{RB} \mathcal{J}$, (1) If \mathcal{J} is h-Ramsey^{*}, then \mathcal{I} is h-Ramsey^{*};

(2) If \mathcal{J} is h-Ramsey, then \mathcal{I} is h-Ramsey.

・ 一 マ ト ・ 日 ト ・

Our results

Definition

 \mathcal{I} is *h*-*Ramsey* (respectively, *h*-*Ramsey*^{*}) if for every $A \in \mathcal{I}^+$, $\mathcal{I}|A$ is Ramsey (respectively, $\mathcal{I}|A$ is *Ramsey*^{*}).

Theorem

Let \mathcal{I} , \mathcal{J} be ideals on ω and \mathcal{J} being a weak Q-ideals such that $\mathcal{I} \leq_{RB} \mathcal{J}$,

(1) If \mathcal{J} is *h*-Ramsey^{*}, then \mathcal{I} is *h*-Ramsey^{*};

(2) If \mathcal{J} is h-Ramsey, then \mathcal{I} is h-Ramsey.

The assertion $\left(1\right)$ follows from the following lemmata.

Lemma (Theorem 4.3,[1])

h-Ramsey^{*} is equal to h-BW property.

Lemma (Theorem 6.2, [2])

The *h*-BW property is preserved under the \leq_{RB} -order in the realm of *Q*-ideals.

・ 同 ト ・ ヨ ト ・ ヨ ト

The assertion (1) follows from the following lemmata.

Lemma (Theorem 4.3,[1])

h-Ramsey^{*} is equal to *h*-BW property.

Lemma (Theorem 6.2, [2])

The *h*-BW property is preserved under the \leq_{RB} -order in the realm of *Q*-ideals.

The key in the proof of the assertion (2) is the following.

Lemma (Theorem 3.16, [1])

 ${\cal I}$ is $h\mbox{-Ramsey}$ if, and only if ${\cal I}$ is $h\mbox{-Fin-BW}$ and being a weak $Q\mbox{-ideal}.$

Claim

Let \mathcal{I} , \mathcal{J} be ideals on ω , and \mathcal{J} being a Q-ideal. If $\mathcal{I} \leq_{KB} \mathcal{J}$ then \mathcal{I} is also a Q-ideal.

Claim

Let \mathcal{I} , \mathcal{J} be ideals on ω , and \mathcal{J} being a weak Q-point. If $\mathcal{I} \leq_{RB} \mathcal{J}$ then \mathcal{I} is also a weak Q-ideal.

• • • • • • • • • • • •

The key in the proof of the assertion (2) is the following.

Lemma (Theorem 3.16, [1])

 \mathcal{I} is *h*-Ramsey if, and only if \mathcal{I} is *h*-Fin-BW and being a weak Q-ideal.

Claim

Let \mathcal{I} , \mathcal{J} be ideals on ω , and \mathcal{J} being a Q-ideal. If $\mathcal{I} \leq_{KB} \mathcal{J}$ then \mathcal{I} is also a Q-ideal.

Claim

Let \mathcal{I} , \mathcal{J} be ideals on ω , and \mathcal{J} being a weak Q-point. If $\mathcal{I} \leq_{RB} \mathcal{J}$ then \mathcal{I} is also a weak Q-ideal.

The key in the proof of the assertion (2) is the following.

Lemma (Theorem 3.16, [1])

 $\mathcal I$ is h-Ramsey if, and only if $\mathcal I$ is h-Fin-BW and being a weak Q-ideal.

Claim

Let \mathcal{I} , \mathcal{J} be ideals on ω , and \mathcal{J} being a Q-ideal. If $\mathcal{I} \leq_{KB} \mathcal{J}$ then \mathcal{I} is also a Q-ideal.

Claim

Let \mathcal{I} , \mathcal{J} be ideals on ω , and \mathcal{J} being a weak Q-point. If $\mathcal{I} \leq_{RB} \mathcal{J}$ then \mathcal{I} is also a weak Q-ideal.

A 回 > A 国 > A

Reference

- R. Filipów, N. Mrożek, I. Recław and P. Szuca, Ideal version of Ramsey Theorem, Czech. Math, 136 (2011), 289-308.
- R. Filipów, N. Mrożek, I. Recław and P. Szuca, Ideal Convergence of Bounded Sequences, J. Symbolic Logic, 72 (2007), 501-512.

Thank you!

★ 3 → < 3</p>