Ideal-versions of Bolzano-Weierstrass property

Jiakui Yu, Shuguo Zhang

College of Mathematics
Sichuan University

The 9th International Conference on Computability Theory and Foundations of Mathematics
Wu Han, March 21-27, 2019

Ideals on ω

Let S be a set and \mathcal{I} be a collection of subsets of S which contains \emptyset and does not contain S.

Definition

\mathcal{I} is called an ideal if it is closed under taking subsets and finite
unions.
Usually, we suppose $S=\omega$ and the ideal containing all finite sets. Actually, we can think ideal as collection of small subsets.

Ideals on ω

Let S be a set and \mathcal{I} be a collection of subsets of S which contains \emptyset and does not contain S.

Definition

\mathcal{I} is called an ideal if it is closed under taking subsets and finite unions.

Usually, we suppose $S=\omega$ and the ideal containing all finite sets. Actually, we can think ideal as collection of small subsets.

Ideals on ω

Let S be a set and \mathcal{I} be a collection of subsets of S which contains \emptyset and does not contain S.

Definition

\mathcal{I} is called an ideal if it is closed under taking subsets and finite unions.

Usually, we suppose $S=\omega$ and the ideal containing all finite sets. Actually, we can think ideal as collection of small subsets.

Let \mathcal{I} be an ideal on ω, the following notations will be used frequently.

- $\mathcal{I}^{+}=\{A \subseteq \omega: A \notin \mathcal{I}\}$;
- $\mathcal{I}^{*}=\{A \subseteq \omega: \omega \backslash A \in \mathcal{I}\}$;
- $\mathcal{I} \mid A=\{I \cap A: I \in \mathcal{I}\}$, for each $A \in \mathcal{I}^{+}$,

Let \mathcal{I} be an ideal on ω, the following notations will be used frequently.

- $\mathcal{I}^{+}=\{A \subseteq \omega: A \notin \mathcal{I}\}$;
- $\mathcal{I}^{*}=\{A \subseteq \omega: \omega \backslash A \in \mathcal{I}\}$;
- $\mathcal{I} \mid A=\{I \cap A: I \in \mathcal{I}\}$, for each $A \in \mathcal{I}^{+}$,

If $A \in \mathcal{I}^{+}$, we say that A is an \mathcal{I}-positive set.

Ideals with combinational properties

The following special ideals were studied in set theory, topology and combinatorics:

Definition

- \mathcal{I} is local Q if for every partition $\left\{A_{n}: n \in \omega\right\} \subset$ Fin of ω, there exists $A \in \mathcal{I}^{+}$such that $\left|A \cap A_{n}\right| \leq 1$ for each $n \in \omega$;
- \mathcal{I} is locally selective if for every partition $\left\{A_{n}: n \in \omega\right\} \subset \mathcal{I}$ of ω, there exists $A \in \mathcal{I}^{+}$such that $\left|A \cap A_{n}\right| \leq 1$ for each $n \in \omega$.
- \mathcal{I} is weak Q if for every $A \in \mathcal{I}^{+}, \mathcal{I} \mid A$ is local Q.
- \mathcal{I} is weakly selective if for every $A \in \mathcal{I}^{+}, \mathcal{I} \mid A$ is locally selective.

Ideals with combinational properties

Definition

Let \mathcal{I} be an ideal on $\omega, r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring. $A \subset \omega$ is \mathcal{I}-homogeneous for c if there is $k \in\{0, \cdots, r-1\}$ such that for every $a \in A$,

$$
\{b \in A: c(\{a, b\}) \neq k\} \in \mathcal{I} .
$$

Definition
Let \mathcal{I} be an ideal on ω. \mathcal{I} is Ramsey* if for every finite coloring of $[\omega]^{2}$ there exists an \mathcal{I}-homogeneous $A \in \mathcal{I}^{+}$

Ideals with combinational properties

Definition

Let \mathcal{I} be an ideal on $\omega, r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring. $A \subset \omega$ is \mathcal{I}-homogeneous for c if there is $k \in\{0, \cdots, r-1\}$ such that for every $a \in A$,

$$
\{b \in A: c(\{a, b\}) \neq k\} \in \mathcal{I} .
$$

Definition

Let \mathcal{I} be an ideal on ω. \mathcal{I} is Ramsey* if for every finite coloring of $[\omega]^{2}$ there exists an \mathcal{I}-homogeneous $A \in \mathcal{I}^{+}$.

Ideals with combinational properties

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω. We say that the pair $(\mathcal{I}, \mathcal{J})$ is Ramsey* if for every finite coloring of $[\omega]^{2}$ there exists $A \in \mathcal{I}^{+}$that is \mathcal{J}-homogeneous.

When $\mathcal{I}=\mathcal{J}$ we say that \mathcal{I} has Ramsey* instead of $(\mathcal{I}, \mathcal{I})$ having
Ramsey*. It is not hard to see that for any ideals \mathcal{I}, \mathcal{J} on ω, if $\mathcal{I} \not \subset \mathcal{J}$, then the pair $(\mathcal{J}, \mathcal{I})$ is Ramsey*

Ideals with combinational properties

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω. We say that the pair $(\mathcal{I}, \mathcal{J})$ is Ramsey* if for every finite coloring of $[\omega]^{2}$ there exists $A \in \mathcal{I}^{+}$that is \mathcal{J}-homogeneous.

When $\mathcal{I}=\mathcal{J}$ we say that \mathcal{I} has Ramsey* instead of $(\mathcal{I}, \mathcal{I})$ having Ramsey*. It is not hard to see that for any ideals \mathcal{I}, \mathcal{J} on ω, if $\mathcal{I} \not \subset \mathcal{J}$, then the pair $(\mathcal{J}, \mathcal{I})$ is Ramsey*.

Ideals with combinational properties

Let \mathcal{I} be an ideal on ω. Recall that a sequence $\left\langle x_{n}: n \in A\right\rangle$ in $[0,1]$ is \mathcal{I}-increasing if for every $N \in A$

$$
\left\{n \in A: x_{N} \geq x_{n}\right\} \in \mathcal{I}
$$

Analogously, we can define \mathcal{I}-decreasing, \mathcal{I}-nonincreasing and \mathcal{I}-nondecreasing sequences. A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$ is \mathcal{I}-monotone if it is \mathcal{I}-nonincreasing or \mathcal{I}-nondecreasing.

Definition
Let \mathcal{I} be an ideal on ω, we say that \mathcal{I} is $M o n^{*}$ if for every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$ there exists $A \in \mathcal{I}^{+}$such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{I}-monotone.

Ideals with combinational properties

Let \mathcal{I} be an ideal on ω. Recall that a sequence $\left\langle x_{n}: n \in A\right\rangle$ in $[0,1]$ is \mathcal{I}-increasing if for every $N \in A$

$$
\left\{n \in A: x_{N} \geq x_{n}\right\} \in \mathcal{I}
$$

Analogously, we can define \mathcal{I}-decreasing, \mathcal{I}-nonincreasing and \mathcal{I}-nondecreasing sequences. A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$ is \mathcal{I}-monotone if it is \mathcal{I}-nonincreasing or \mathcal{I}-nondecreasing.

Definition
Let \mathcal{I} be an ideal on ω, we say that \mathcal{I} is $M o n^{*}$ if for every sequence
there exists $A \in \mathcal{I}^{+}$such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{I}-monotone.

Ideals with combinational properties

Let \mathcal{I} be an ideal on ω. Recall that a sequence $\left\langle x_{n}: n \in A\right\rangle$ in $[0,1]$ is \mathcal{I}-increasing if for every $N \in A$

$$
\left\{n \in A: x_{N} \geq x_{n}\right\} \in \mathcal{I}
$$

Analogously, we can define \mathcal{I}-decreasing, \mathcal{I}-nonincreasing and \mathcal{I}-nondecreasing sequences. A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$ is \mathcal{I}-monotone if it is \mathcal{I}-nonincreasing or \mathcal{I}-nondecreasing.

Definition

Let \mathcal{I} be an ideal on ω, we say that \mathcal{I} is $M o n^{*}$ if for every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$ there exists $A \in \mathcal{I}^{+}$such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{I}-monotone.

Ideals with combinational properties

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω. We say that the pair $(\mathcal{I}, \mathcal{J})$ is Mon* if every sequence in $[0,1]$ contains a \mathcal{J}-monotone \mathcal{I}-subsequence. That is, for every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in [0,1], there exists $A \in \mathcal{I}^{+}$such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone.

Ideals with combinational properties

Let \mathcal{I} be an ideal on ω. Recall that \mathcal{I} is dense (or tall) if every infinite set $A \subseteq \omega$ contains an infinite subset B that belongs to \mathcal{I}.

Definition

Let \mathcal{A}, \mathcal{B} be sets of subsets of ω. We say that \mathcal{B} is \mathcal{A}-dense if for each $A \in \mathcal{A}$, there exists an infinite $B \subseteq A$ such that $B \in \mathcal{B}$.

Evidently, \mathcal{I} being $[\omega]^{\omega}$-dense coincides with \mathcal{I} being dense. In addition, for any ideal $\mathcal{I}, \mathcal{I}^{+}$is $[\omega]^{\omega}$-dense if, and only if $\mathcal{I}=$ Fin.

Ideals with combinational properties

Let \mathcal{I} be an ideal on ω. Recall that \mathcal{I} is dense (or tall) if every infinite set $A \subseteq \omega$ contains an infinite subset B that belongs to \mathcal{I}.

Definition

Let \mathcal{A}, \mathcal{B} be sets of subsets of ω. We say that \mathcal{B} is \mathcal{A}-dense if for each $A \in \mathcal{A}$, there exists an infinite $B \subseteq A$ such that $B \in \mathcal{B}$.

Evidently, \mathcal{I} being $[\omega]^{\omega}$-dense coincides with \mathcal{I} being dense. In addition, for any ideal $\mathcal{I}, \mathcal{I}^{+}$is $[\omega]^{\omega}$-dense if, and only if $\mathcal{I}=$ Fin

Ideals with combinational properties

Let \mathcal{I} be an ideal on ω. Recall that \mathcal{I} is dense (or tall) if every infinite set $A \subseteq \omega$ contains an infinite subset B that belongs to \mathcal{I}.

Definition

Let \mathcal{A}, \mathcal{B} be sets of subsets of ω. We say that \mathcal{B} is \mathcal{A}-dense if for each $A \in \mathcal{A}$, there exists an infinite $B \subseteq A$ such that $B \in \mathcal{B}$.

Evidently, \mathcal{I} being $[\omega]^{\omega}$-dense coincides with \mathcal{I} being dense. In addition, for any ideal $\mathcal{I}, \mathcal{I}^{+}$is $[\omega]^{\omega}$-dense if, and only if $\mathcal{I}=$ Fin.

Ideals with combinational properties

Let \mathcal{I}, \mathcal{J} be ideals on ω. For a map $\varphi: \omega \rightarrow \omega$, the image of \mathcal{J} is defined by

$$
\varphi(\mathcal{J})=\left\{A \subseteq \omega: \varphi^{-1}(A) \in \mathcal{J}\right\} .
$$

Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\omega \notin \varphi(\mathcal{J})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω

- $\mathcal{I} \leq_{K} \mathcal{J}$ if there is a function $\varphi: \omega \rightarrow \omega$ such that $\mathcal{I} \subseteq \varphi(\mathcal{J})$, i.e, $\varphi^{-1}(A) \in \mathcal{J}$ for any $A \in \mathcal{I}$;
- $\mathcal{I} \leq_{K B} \mathcal{J}$ if there is a finite-to-one function $\varphi: \omega \rightarrow \omega$ such that $\mathcal{I} \leq_{K} \mathcal{J}$;
- $\mathcal{I}<_{R B} \mathcal{J}$ if there is a finite-to-one function $\varphi: \omega \rightarrow \omega$ such that $A \in \mathcal{I}$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$;

Ideals with combinational properties

Let \mathcal{I}, \mathcal{J} be ideals on ω. For a map $\varphi: \omega \rightarrow \omega$, the image of \mathcal{J} is defined by

$$
\varphi(\mathcal{J})=\left\{A \subseteq \omega: \varphi^{-1}(A) \in \mathcal{J}\right\} .
$$

Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\omega \notin \varphi(\mathcal{J})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on $\omega_{\text {, }}$

Ideals with combinational properties

Let \mathcal{I}, \mathcal{J} be ideals on ω. For a map $\varphi: \omega \rightarrow \omega$, the image of \mathcal{J} is defined by

$$
\varphi(\mathcal{J})=\left\{A \subseteq \omega: \varphi^{-1}(A) \in \mathcal{J}\right\} .
$$

Clearly, $\varphi(\mathcal{J})$ is closed under subsets and finite unions and $\omega \notin \varphi(\mathcal{J})$. Moreover, if φ is finite-to-one then $\varphi(\mathcal{J})$ is an ideal.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω,

- $\mathcal{I} \leq_{K} \mathcal{J}$ if there is a function $\varphi: \omega \rightarrow \omega$ such that $\mathcal{I} \subseteq \varphi(\mathcal{J})$, i.e, $\varphi^{-1}(A) \in \mathcal{J}$ for any $A \in \mathcal{I}$;
- $\mathcal{I} \leq_{K B} \mathcal{J}$ if there is a finite-to-one function $\varphi: \omega \rightarrow \omega$ such that $\mathcal{I} \leq_{K} \mathcal{J}$;
- $\mathcal{I} \leq_{R B} \mathcal{J}$ if there is a finite-to-one function $\varphi: \omega \rightarrow \omega$ such that $A \in \mathcal{I}$ if, and only if $\varphi^{-1}(A) \in \mathcal{J}$ for every $A \subset \omega$;

Ideal-convergence

Let \mathcal{I} be an ideal on ω, and X being a topological space. For sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in X, we say that $\left\langle x_{n}: n \in \omega\right\rangle$ is \mathcal{I}-convergent to l if for each open neighborhood U of l,

$$
\left\{n: x_{n} \notin U\right\} \in \mathcal{I} .
$$

The notion of \mathcal{I}-convergence is a generalization of the classical one. It was first considered by Steinhaus and Fast in the case of the ideal of sets of statistical density 0 :

Ideal-convergence

Let \mathcal{I} be an ideal on ω, and X being a topological space. For sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in X, we say that $\left\langle x_{n}: n \in \omega\right\rangle$ is \mathcal{I}-convergent to l if for each open neighborhood U of l,

$$
\left\{n: x_{n} \notin U\right\} \in \mathcal{I} .
$$

The notion of \mathcal{I}-convergence is a generalization of the classical one. It was first considered by Steinhaus and Fast in the case of the ideal of sets of statistical density 0 :

$$
\mathcal{I}_{d}=\left\{A \subset \omega: \limsup _{n \rightarrow \infty} \frac{|A \cap n|}{n}=0\right\} .
$$

Ideal-convergence

By an \mathcal{I}-subsequence of $\left\langle x_{n}: n \in \omega\right\rangle$ we means $\left\langle x_{n}: n \in A\right\rangle$ for some $A \notin \mathcal{I}$. Filipów, Mrożek, Recław and Szuca introduced the following notions.

Definition
Let \mathcal{I} be an ideal on ω, X being a topological space.

- (X, \mathcal{I}) satisfies $B W$ if every sequence in X has \mathcal{I}-convergent I-subsequence;
- (X, \mathcal{I}) satisfies $F i n B W$ if every sequence in X has convergent \mathcal{I}-subsequence;

Ideal-convergence

By an \mathcal{I}-subsequence of $\left\langle x_{n}: n \in \omega\right\rangle$ we means $\left\langle x_{n}: n \in A\right\rangle$ for some $A \notin \mathcal{I}$. Filipów, Mrożek, Recław and Szuca introduced the following notions.

Definition

Let \mathcal{I} be an ideal on ω, X being a topological space.

- (X, \mathcal{I}) satisfies $B W$ if every sequence in X has \mathcal{I}-convergent \mathcal{I}-subsequence;
- (X, \mathcal{I}) satisfies $F i n B W$ if every sequence in X has convergent \mathcal{I}-subsequence;

What will we consider?

We mainly consider the following questions:

Question

These notions involve two ideals: \mathcal{I} and Fin. We are interested in the question how about if we replace Fin by another ideal \mathcal{J} ?

Here is the key definition, which is a common generalization of these types

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω, X being a topological space. We say that X has $(\mathcal{I}, \mathcal{J})$ - $B W$ property if every sequence in X has \mathcal{J}-convergent \mathcal{I}-subsequence

It is worthy to point out that if $\mathcal{I} \nsubseteq \mathcal{J}$, then for arbitrary space X it has $(\mathcal{J}, \mathcal{I})$ - $B W$ property. Indeed, picking $A \in \mathcal{I} \backslash \mathcal{J}, A$ can deal with any sequence in X

What will we consider?

We mainly consider the following questions:

Question

These notions involve two ideals: \mathcal{I} and Fin. We are interested in the question how about if we replace Fin by another ideal \mathcal{J} ?

Here is the key definition, which is a common generalization of these types.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω, X being a topological space. We say that X has $(\mathcal{I}, \mathcal{J})$ - $B W$ property if every sequence in X has \mathcal{J}-convergent \mathcal{I}-subsequence.

What will we consider?

We mainly consider the following questions:

Question

These notions involve two ideals: \mathcal{I} and Fin. We are interested in the question how about if we replace Fin by another ideal \mathcal{J} ?

Here is the key definition, which is a common generalization of these types.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω, X being a topological space. We say that X has $(\mathcal{I}, \mathcal{J})$ - $B W$ property if every sequence in X has \mathcal{J}-convergent \mathcal{I}-subsequence.

It is worthy to point out that if $\mathcal{I} \nsubseteq \mathcal{J}$, then for arbitrary space X, it has $(\mathcal{J}, \mathcal{I})$ - $B W$ property. Indeed, picking $A \in \mathcal{I} \backslash \mathcal{J}, A$ can deal with any sequence in X.

($\mathcal{I}, \mathcal{J})$-splitting family

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω, and $\mathcal{S} \subset[\omega]^{\omega}$. We say that \mathcal{S} is an $(\mathcal{I}, \mathcal{J})$-splitting family if for every $A \in \mathcal{I}^{+}$there exists $X \in \mathcal{S}$ such that both of $A \cap X$ and $A \backslash X$ belong to \mathcal{J}^{+}.

Evidently, when \mathcal{I} is equal to \mathcal{J}, the $(\mathcal{I}, \mathcal{J})$-splitting family coincides with the \mathcal{I}-splitting family:

Definition

Let $\mathcal{S} \subseteq[\omega]^{\omega}$, and \mathcal{I} being an ideal on ω. A family \mathcal{S} is \mathcal{I}-splitting if for every $A \in \mathcal{I}^{+}$there exists $S \in \mathcal{S}$ such that $A \cap S \in \mathcal{I}^{+}$and

($\mathcal{I}, \mathcal{J})$-splitting family

Definition

Let \mathcal{I}, \mathcal{J} be ideals on ω, and $\mathcal{S} \subset[\omega]^{\omega}$. We say that \mathcal{S} is an $(\mathcal{I}, \mathcal{J})$-splitting family if for every $A \in \mathcal{I}^{+}$there exists $X \in \mathcal{S}$ such that both of $A \cap X$ and $A \backslash X$ belong to \mathcal{J}^{+}.

Evidently, when \mathcal{I} is equal to \mathcal{J}, the $(\mathcal{I}, \mathcal{J})$-splitting family coincides with the \mathcal{I}-splitting family:

Definition

Let $\mathcal{S} \subseteq[\omega]^{\omega}$, and \mathcal{I} being an ideal on ω. A family \mathcal{S} is \mathcal{I}-splitting if for every $A \in \mathcal{I}^{+}$there exists $S \in \mathcal{S}$ such that $A \cap S \in \mathcal{I}^{+}$and $A \backslash S \in \mathcal{I}^{+}$.

$(\mathcal{I}, \mathcal{J})$-splitting family

Definition

Let $\mathfrak{s}(\mathcal{I}, \mathcal{J})$ be the smallest cardinality of an $(\mathcal{I}, \mathcal{J})$-splitting family.

It is easy to see that the $\mathfrak{s}($ Fin, Fin) is just the splitting number \mathfrak{s} introduced and $\mathfrak{s}(\mathcal{I}, \mathcal{I})$ is just $\mathfrak{s}(\mathcal{I})$

Theorem (Fillipow, Mrozek, Rectaw and Szuca)
\mathcal{I} satisfies $B W$ if, and only if $\mathfrak{s}(\mathcal{I})$

($\mathcal{I}, \mathcal{J})$-splitting family

Definition

Let $\mathfrak{s}(\mathcal{I}, \mathcal{J})$ be the smallest cardinality of an $(\mathcal{I}, \mathcal{J})$-splitting family.
It is easy to see that the \mathfrak{s} (Fin, Fin) is just the splitting number \mathfrak{s} introduced and $\mathfrak{s}(\mathcal{I}, \mathcal{I})$ is just $\mathfrak{s}(\mathcal{I})$.

Theorem (Filipów, Mrozek, Rectaw and Szuca)
\mathcal{I} satisfies $B W$ if, and only if $\mathfrak{s}(\mathcal{I})$

$(\mathcal{I}, \mathcal{J})$-splitting family

Definition

Let $\mathfrak{s}(\mathcal{I}, \mathcal{J})$ be the smallest cardinality of an $(\mathcal{I}, \mathcal{J})$-splitting family.
It is easy to see that the \mathfrak{s} (Fin, Fin) is just the splitting number \mathfrak{s} introduced and $\mathfrak{s}(\mathcal{I}, \mathcal{I})$ is just $\mathfrak{s}(\mathcal{I})$.

Theorem (Filipów, Mrożek, Recław and Szuca)
 \mathcal{I} satisfies $B W$ if, and only if $\mathfrak{s}(\mathcal{I})>\omega$

$(\mathcal{I}, \mathcal{J})$-small set

Let $r \in \omega, s \in r^{n}$ and $i \in\{0, \cdots, r-1\}$, by $s \frown i$ we mean the sequence of length $n+1$ (write $\operatorname{lh}(s)=n+1$) which extends s by i. If $x \in r^{\omega}$ and $n \in \omega, x \mid n$ denotes the initial segment $x \mid n=\langle x(0), x(1), \cdots, x(n-1)\rangle$.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on $\omega . A \subset \omega$ is called an $(\mathcal{I}, \mathcal{J})$-small set if there exists $r \in \omega$, and exists a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ such that for all $s \in r^{<\omega}$, we have

$(\mathcal{I}, \mathcal{J})$-small set

Let $r \in \omega, s \in r^{n}$ and $i \in\{0, \cdots, r-1\}$, by $s \frown i$ we mean the sequence of length $n+1$ (write $l h(s)=n+1$) which extends s by i. If $x \in r^{\omega}$ and $n \in \omega, x \mid n$ denotes the initial segment $x \mid n=\langle x(0), x(1), \cdots, x(n-1)\rangle$.

Definition

Let \mathcal{I}, \mathcal{J} be ideals on $\omega . A \subset \omega$ is called an $(\mathcal{I}, \mathcal{J})$-small set if there exists $r \in \omega$, and exists a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ such that for all $s \in r^{<\omega}$, we have
$S_{1} A_{\emptyset}=A$,
$S_{2} A_{s}=A_{s \frown 0} \cup \cdots \cup A_{s \frown(r-1)}$,
$S_{3} \quad A_{s \frown i} \cap A_{s \frown j}=\emptyset$ for every $i \neq j$,
S_{4} for every $b \in r^{\omega}$, every $X \subset \omega$, if $X \backslash A_{b \mid n} \in \mathcal{I}$ for each $n \in \omega$, then $X \in \mathcal{J}$.

$(\mathcal{I}, \mathcal{J})$-small set

Definition
 Let $\mathcal{S}_{(\mathcal{I}, \mathcal{J})}$ denote all $(\mathcal{I}, \mathcal{J})$-small sets in $\mathcal{P}(\omega)$.

Note that $\mathcal{S}_{(\mathcal{I}, \mathcal{J})} \neq \emptyset$ if, and only if $\mathcal{I} \subseteq \mathcal{J} \subseteq \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$.

$(\mathcal{I}, \mathcal{J})$-small set

Definition

Let $\mathcal{S}_{(\mathcal{I}, \mathcal{J})}$ denote all $(\mathcal{I}, \mathcal{J})$-small sets in $\mathcal{P}(\omega)$.
Note that $\mathcal{S}_{(\mathcal{I}, \mathcal{J})} \neq \emptyset$ if, and only if $\mathcal{I} \subseteq \mathcal{J} \subseteq \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$.

$(\mathcal{I}, \mathcal{J})$-small set

Definition

Let $\mathcal{S}_{(\mathcal{I}, \mathcal{J})}$ denote all $(\mathcal{I}, \mathcal{J})$-small sets in $\mathcal{P}(\omega)$.
Note that $\mathcal{S}_{(\mathcal{I}, \mathcal{J})} \neq \emptyset$ if, and only if $\mathcal{I} \subseteq \mathcal{J} \subseteq \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$.

Our results and these sketch of proofs

Theorem
 $\omega \notin \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$ if, and only if $[0,1]$ satisfies $(\mathcal{J}, \mathcal{I})$ - $B W$.

Sketch of proof

The key fact:
Lemma
$(\mathcal{J}, \mathcal{I})$-BW property is preserved for closed subsets and continuous images.

```
Thus, we consider the Cantor space 2 }\mp@subsup{2}{}{\omega}\mathrm{ instead of [0, 1]. Assume
that }\omega\not\in\mp@subsup{\mathcal{S}}{(\mathcal{I},\mathcal{I})}{}\mathrm{ . For every sequence }\langle\mp@subsup{x}{n}{}:n\in\omega\rangle\mathrm{ in 2 }\mp@subsup{}{}{\omega}\mathrm{ , every
s\in2<\omega
Then {\mp@subsup{A}{s}{}:s\in\mp@subsup{2}{}{<\omega}}\mathrm{ satisfies }\mp@subsup{S}{1}{}-\mp@subsup{S}{3}{}\mathrm{ . Since }\omega\not\in\mp@subsup{\mathcal{S}}{(\mathcal{I},\mathcal{J})}{}\mathrm{ , by the}
condition S}\mp@subsup{S}{4}{}\mathrm{ , there exists }X\not\in\mathcal{J}\mathrm{ and }b\in\mp@subsup{2}{}{\omega}\mathrm{ such that
X\ \Ab|n}\in\mathcal{I}\mathrm{ for each }n\in\omega\mathrm{ . Then }\langle\mp@subsup{x}{n}{}:n\inX\rangle\mathrm{ is I-convergent
to b
```


Sketch of proof

The key fact:

Abstract

Lemma $(\mathcal{J}, \mathcal{I})$-BW property is preserved for closed subsets and continuous images.

Thus, we consider the Cantor space 2^{ω} instead of $[0,1]$. that $\omega \notin \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$. For every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in 2^{ω}, every

$$
s \in 2^{<\omega} \text {, put }
$$

$$
A_{s}=\left\{n: s \subset x_{n}\right\} .
$$

Then $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfies $S_{1}-S_{3}$. Since $\omega \notin \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$, by the
condition S_{4}, there exists $X \notin \mathcal{J}$ and $b \in 2^{\omega}$ such that
$X \backslash A_{b \mid n} \in \mathcal{I}$ for each $n \in \omega$. Then $\left\langle x_{n}: n \in X\right\rangle$ is \mathcal{I}-convergent to b

Sketch of proof

The key fact:

Lemma

$(\mathcal{J}, \mathcal{I})$-BW property is preserved for closed subsets and continuous images.

Thus, we consider the Cantor space 2^{ω} instead of $[0,1]$. Assume that $\omega \notin \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$. For every sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in 2^{ω}, every $s \in 2^{<\omega}$, put

$$
A_{s}=\left\{n: s \subset x_{n}\right\}
$$

Then $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfies $S_{1}-S_{3}$. Since $\omega \notin \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$, by the condition S_{4}, there exists $X \notin \mathcal{J}$ and $b \in 2^{\omega}$ such that $X \backslash A_{b \mid n} \in \mathcal{I}$ for each $n \in \omega$. Then $\left\langle x_{n}: n \in X\right\rangle$ is \mathcal{I}-convergent to b.

Sketch of proof

Suppose that $\omega \in \mathcal{S}_{(\mathcal{I}, \mathcal{J})}$. So there exists $r \in \omega$, $\left\{A_{s}: s \in r^{<\omega}\right\}$ such that the conditions $S_{1}-S_{4}$ are fulfilled. Note that for each $n \in \omega$, there is exactly one $x_{n} \in 2^{\omega}$ such that $n \in A_{x_{n} \mid l}$ for each $l \in \omega$. Then we obtain a sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in 2^{ω}. Since 2^{ω} satisfies $(\mathcal{J}, \mathcal{I})$-BW, the sequence has an \mathcal{I}-convergent \mathcal{J}-subsequence, namely, there is a $x \in 2^{\omega}$ and $X \subseteq \omega$ with $X \in \mathcal{J}^{+}$such that $\left\langle x_{n}: n \in X\right\rangle$ is \mathcal{I}-convergent to x. Since for each $l \in \omega$

$$
X \backslash A_{x \mid l} \subseteq\left\{n \in X:\left|x-x_{n}\right| \geq \frac{1}{2^{2}}\right\} \in \mathcal{I}
$$

By the condition $S_{4}, X \in \mathcal{J}$, but this contradicts the fact that $X \in \mathcal{J}^{+}$. Therefore, we complete the proof.

Theorem

Let \mathcal{I}, \mathcal{J} be ideals on ω with $\mathcal{J} \subseteq \mathcal{I}$. In the following list of conditions each implies the next.
(1) $\mathfrak{s}(\mathcal{I}, \mathcal{J})>\omega$.
(2) $[0,1]$ satisfies $(\mathcal{I}, \mathcal{J})-B W$.
(3) $\mathfrak{s}(\mathcal{J}, \mathcal{I})>\omega$.

Sketch of proof

$(1) \Rightarrow(2)$ Suppose that $[0,1]$ does not have $(\mathcal{I}, \mathcal{J})-B W$. By Theorem 3.4, ω is a $(\mathcal{J}, \mathcal{I})$-small set. We may assume that there exists a $r \in \omega$, and a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ such that the conditions $S_{1}-S_{3}$ are fulfilled. In what follows we will show that $\left\{A_{s}: s \in r^{<\omega}\right\}$ is an $(\mathcal{I}, \mathcal{J})$-splitting family. For the sake of contradiction, suppose that there is $X \in \mathcal{I}^{+}$such that for every $s \in r^{<\omega}$ either $X \cap A_{s} \in \mathcal{J}$ or $X \backslash A_{s} \in \mathcal{J}$. Put

$$
T=\left\{s \in r^{<\omega}: X \backslash A_{s} \in \mathcal{J}\right\} .
$$

Then T is a tree on $\{0, \cdots, r-1\}$ with finite branches for every level. In order to see that T is an infinite tree, we need the following lemma:

Lemma
For any $n \in \omega$, there is $s \in r^{n}$ such that $X \backslash A_{s} \in \mathcal{J}$.

Sketch of proof

$(1) \Rightarrow(2)$ Suppose that $[0,1]$ does not have $(\mathcal{I}, \mathcal{J})-B W$. By Theorem 3.4, ω is a $(\mathcal{J}, \mathcal{I})$-small set. We may assume that there exists a $r \in \omega$, and a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ such that the conditions $S_{1}-S_{3}$ are fulfilled. In what follows we will show that $\left\{A_{s}: s \in r^{<\omega}\right\}$ is an $(\mathcal{I}, \mathcal{J})$-splitting family. For the sake of contradiction, suppose that there is $X \in \mathcal{I}^{+}$such that for every $s \in r^{<\omega}$ either $X \cap A_{s} \in \mathcal{J}$ or $X \backslash A_{s} \in \mathcal{J}$. Put

$$
T=\left\{s \in r^{<\omega}: X \backslash A_{s} \in \mathcal{J}\right\} .
$$

Then T is a tree on $\{0, \cdots, r-1\}$ with finite branches for every level. In order to see that T is an infinite tree, we need the following lemma:

Lemma

For any $n \in \omega$, there is $s \in r^{n}$ such that $X \backslash A_{s} \in \mathcal{J}$.

Sketch of proof

Since T is an infinite tree with finite branches, by König's lemma, there exists $b \in r^{\omega}$ such that $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$. According to the fact that ω is an $(\mathcal{J}, \mathcal{I})$-small set we have that $X \in \mathcal{I}$. Contradiction.

which verifies $\omega \in \mathcal{S}_{(\mathcal{J}, \mathcal{I})}$ (this implies that $[0,1]$ does not have (\mathcal{I}, \mathcal{J})-BW property)

Sketch of proof

Since T is an infinite tree with finite branches, by König's lemma, there exists $b \in r^{\omega}$ such that $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$. According to the fact that ω is an $(\mathcal{J}, \mathcal{I})$-small set we have that $X \in \mathcal{I}$. Contradiction.
$(2) \Rightarrow(3)$ Suppose that $\mathfrak{s}(\mathcal{J}, \mathcal{I})=\omega$, and $\left\{S_{n}: n \in \omega\right\}$ be a $(\mathcal{J}, \mathcal{I})$-splitting family. We will construct a family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ which verifies $\omega \in \mathcal{S}_{(\mathcal{J}, \mathcal{I})}$ (this implies that $[0,1]$ does not have $(\mathcal{I}, \mathcal{J})$-BW property).

Sketch of proof

First, take $A_{\emptyset}=\omega$, and let n_{\emptyset} be the smallest n such that S_{n} splits ω. Put

$$
A_{0}=A_{\emptyset} \cap A_{n_{\emptyset}} ; A_{1}=A_{\emptyset} \backslash A_{n_{\emptyset}} .
$$

Sketch of proof

First, take $A_{\emptyset}=\omega$, and let n_{\emptyset} be the smallest n such that S_{n} splits ω. Put

$$
A_{0}=A_{\emptyset} \cap A_{n_{\emptyset}} ; A_{1}=A_{\emptyset} \backslash A_{n_{\emptyset}} .
$$

Then $A_{0} \in \mathcal{I}^{+}$and $A_{1} \in \mathcal{I}^{+}$.

Sketch of proof

Suppose that we have already constructed A_{s} for all $s \in 2^{n}$. Then for each $s \in 2^{n}, A_{s} \in \mathcal{I}^{+}$. Let n_{s} be the smallest n such that S_{n} splits A_{s}.

According to the definition of $(\mathcal{J}, \mathcal{I})$-splitting family, both of $A_{s \frown 0}$ and $A_{s \frown 1}$ are in \mathcal{I}^{+}. This allows us to keep this proceed going and then we finish our construction. Clearly, the family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfies $S_{1}-S_{3}$, it is enough to show that this family also satisfies the condition S_{4}. For every $b \in 2^{\omega}$, every $X \subset \omega$ with $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$. Suppose that $X \in \mathcal{I}^{+}$. Let n_{X} be the smallest n such that S_{n} splits X. Since $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$, so $S_{n_{\mathrm{V}}}$ splits $A_{\left.b\right|_{n}}$ for every $n \in \omega$. Hence, there is $k \leq n_{X}$ such that $S_{n_{b \mid k}}=S_{n_{X}}$. Then either $A_{b \mid k+1}=A_{b \mid k} \cap S_{n_{X}}$ or This implies that $S_{n_{X}}$ does not split $A_{b \mid k+1}$, which is a contradiction. Therefore, the family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ also satisfies

Sketch of proof

Suppose that we have already constructed A_{s} for all $s \in 2^{n}$. Then for each $s \in 2^{n}, A_{s} \in \mathcal{I}^{+}$. Let n_{s} be the smallest n such that S_{n} splits A_{s}. Put

$$
A_{s \frown 0}=A_{s} \cap S_{n_{s}}, A_{s \frown 1}=A_{s} \backslash S_{n_{s}} .
$$

According to the definition of $(\mathcal{J}, \mathcal{I})$-splitting family, both of $A_{s \sim 0}$ and $A_{s _1}$ are in \mathcal{I}^{+}. This allows us to keep this proceed going and then we finish our construction. Clearly, the family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfies $S_{1}-S_{3}$, it is enough to show that this family also satisfies the condition S_{4}. For every $b \in 2^{\omega}$, every $X \subset \omega$ with $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$. Suppose that $X \in \mathcal{I}^{+}$. Let n_{X} be the smallest n such that S_{n} splits X. Since $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$, so $S_{n_{X}}$ splits $A_{b \mid n}$ for every $n \in \omega$. Hence, there is $k \leq n_{X}$ such that $S_{n_{b \mid k}}=S_{n_{X}}$. Then either $A_{b \mid k+1}=A_{b \mid k} \cap S_{n_{X}}$ or

This implies that $S_{n_{X}}$ does not split $A_{b \mid k+1}$, which is a contradiction. Therefore, the family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ also satisfies

Sketch of proof

Suppose that we have already constructed A_{s} for all $s \in 2^{n}$. Then for each $s \in 2^{n}, A_{s} \in \mathcal{I}^{+}$. Let n_{s} be the smallest n such that S_{n} splits A_{s}. Put

$$
A_{s \frown 0}=A_{s} \cap S_{n_{s}}, A_{s \frown 1}=A_{s} \backslash S_{n_{s}} .
$$

According to the definition of $(\mathcal{J}, \mathcal{I})$-splitting family, both of $A_{s \frown 0}$ and $A_{s \sim 1}$ are in \mathcal{I}^{+}. This allows us to keep this proceed going and then we finish our construction. Clearly, the family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfies $S_{1}-S_{3}$, it is enough to show that this family also satisfies the condition S_{4}. For every $b \in 2^{\omega}$, every $X \subset \omega$ with $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$. Suppose that $X \in \mathcal{I}^{+}$. Let n_{X} be the smallest n such that S_{n} splits X. Since $X \backslash A_{b \mid n} \in \mathcal{J}$ for every $n \in \omega$, so $S_{n_{X}}$ splits $A_{b \mid n}$ for every $n \in \omega$. Hence, there is $k \leq n_{X}$ such that $S_{n_{b \mid k}}=S_{n_{X}}$. Then either $A_{b \mid k+1}=A_{b \mid k} \cap S_{n_{X}}$ or $A_{b \mid k+1}=A_{b \mid k} \backslash S_{n_{X}}$. This implies that $S_{n_{X}}$ does not split $A_{b \mid k+1}$, which is a contradiction. Therefore, the family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ also satisfies S_{4}.

Our results

Theorem

Let \mathcal{I}, \mathcal{J} be ideals on ω, then the following conditions are equivalent:
(1) $(\mathcal{I}, \mathcal{J})$ is Ramsey*,
(2) $(\mathcal{I}, \mathcal{J})$ is Mon*,
(3) $[0,1]$ has $(\mathcal{I}, \mathcal{J})-B W$.
$(1) \Rightarrow(2)$ Let $\left\langle x_{n}: n \in \omega\right\rangle$ be a sequence in $[0,1]$, define a coloring $c:[\omega]^{2} \rightarrow\{0,1\}$ by
$c(\{n, m\})=0$ if $n<m$ and $x_{n} \leq x_{m} ; c(\{n, m\})=1$, otherwise.

Since $(\mathcal{I}, \mathcal{J})$ is Ramsey*, there exists $A \in \mathcal{I}^{+}$such that A is \mathcal{J}-homogeneous for c. So we may assume that for every $n \in A$,

Therefore, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-increasing.

Sketch of proof

$(1) \Rightarrow(2)$ Let $\left\langle x_{n}: n \in \omega\right\rangle$ be a sequence in $[0,1]$, define a coloring $c:[\omega]^{2} \rightarrow\{0,1\}$ by

$$
c(\{n, m\})=0 \text { if } n<m \text { and } x_{n} \leq x_{m} ; c(\{n, m\})=1, \text { otherwise. }
$$

Since $(\mathcal{I}, \mathcal{J})$ is Ramsey*, there exists $A \in \mathcal{I}^{+}$such that A is \mathcal{J}-homogeneous for c.

Therefore, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-increasing.

Sketch of proof

$(1) \Rightarrow(2)$ Let $\left\langle x_{n}: n \in \omega\right\rangle$ be a sequence in [0, 1], define a coloring $c:[\omega]^{2} \rightarrow\{0,1\}$ by

$$
c(\{n, m\})=0 \text { if } n<m \text { and } x_{n} \leq x_{m} ; c(\{n, m\})=1, \text { otherwise. }
$$

Since $(\mathcal{I}, \mathcal{J})$ is Ramsey*, there exists $A \in \mathcal{I}^{+}$such that A is \mathcal{J}-homogeneous for c. So we may assume that for every $n \in A$,

$$
\{m: c(\{n, m\})=1\} \in \mathcal{J}
$$

Therefore, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-increasing.

Sketch of proof

$(1) \Rightarrow(2)$ Let $\left\langle x_{n}: n \in \omega\right\rangle$ be a sequence in [0, 1], define a coloring $c:[\omega]^{2} \rightarrow\{0,1\}$ by

$$
c(\{n, m\})=0 \text { if } n<m \text { and } x_{n} \leq x_{m} ; c(\{n, m\})=1, \text { otherwise. }
$$

Since $(\mathcal{I}, \mathcal{J})$ is Ramsey*, there exists $A \in \mathcal{I}^{+}$such that A is \mathcal{J}-homogeneous for c. So we may assume that for every $n \in A$,

$$
\{m: c(\{n, m\})=1\} \in \mathcal{J}
$$

Therefore, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-increasing.
$(2) \Rightarrow(3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon*. *.
For a given sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$, there exists $A \in \mathcal{I}^{+}$ such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone.
We may assume that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-nondecreasing. Let

$$
x=\sup _{n \in A} x_{n} .
$$

For any $\varepsilon>0$, there is $x_{N} \in A$ such that $x_{N}>x-\varepsilon$. Then

$$
\left\{n \in A:\left|x_{n}-x\right| \geq c\right\} \subseteq\left\{n \in A: x_{N}>x_{n}\right\} \in \mathcal{T}
$$

Thus, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-convergent to x.

Sketch of proof

$(2) \Rightarrow(3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon^{*}.
For a given sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$, there exists $A \in \mathcal{I}^{+}$ such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone.
We may assume that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-nondecreasing. Let

For any $\varepsilon>0$, there is $x_{N} \in A$ such that $x_{N}>x-\varepsilon$. Then $\left\{n \in A:\left|x_{n}-x\right| \geq \varepsilon\right\} \subseteq\left\{n \in A: x_{N}>x_{n}\right\} \in \mathcal{J}$

Thus, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-convergent to x.

Sketch of proof

$(2) \Rightarrow(3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon*. *.
For a given sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$, there exists $A \in \mathcal{I}^{+}$ such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone.
We may assume that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-nondecreasing.

For any $\varepsilon>0$, there is $x_{N} \in A$ such that $x_{N}>x-\varepsilon$. Then

Thus, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-convergent to x

Sketch of proof

$(2) \Rightarrow(3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon*.
For a given sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$, there exists $A \in \mathcal{I}^{+}$ such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone.
We may assume that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-nondecreasing. Let

$$
x=\sup _{n \in A} x_{n}
$$

For any $\varepsilon>0$, there is $x_{N} \in A$ such that $x_{N}>x-\varepsilon$. Then

Thus, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-convergent to x

Sketch of proof

$(2) \Rightarrow(3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon*. *.
For a given sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$, there exists $A \in \mathcal{I}^{+}$ such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone.
We may assume that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-nondecreasing. Let

$$
x=\sup _{n \in A} x_{n}
$$

For any $\varepsilon>0$, there is $x_{N} \in A$ such that $x_{N}>x-\varepsilon$. Then

$$
\left\{n \in A:\left|x_{n}-x\right| \geq \varepsilon\right\} \subseteq\left\{n \in A: x_{N}>x_{n}\right\} \in \mathcal{J}
$$

Thus, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-convergent to x.

Sketch of proof

$(2) \Rightarrow(3)$ Assume that $(\mathcal{I}, \mathcal{J})$ is Mon*. *.
For a given sequence $\left\langle x_{n}: n \in \omega\right\rangle$ in $[0,1]$, there exists $A \in \mathcal{I}^{+}$ such that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-monotone.
We may assume that $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-nondecreasing. Let

$$
x=\sup _{n \in A} x_{n}
$$

For any $\varepsilon>0$, there is $x_{N} \in A$ such that $x_{N}>x-\varepsilon$. Then

$$
\left\{n \in A:\left|x_{n}-x\right| \geq \varepsilon\right\} \subseteq\left\{n \in A: x_{N}>x_{n}\right\} \in \mathcal{J}
$$

Thus, $\left\langle x_{n}: n \in A\right\rangle$ is \mathcal{J}-convergent to x.

Sketch of proof

$(3) \Rightarrow(1)$ Let $r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring of $[\omega]^{2}$.
We shall define a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ that satisfies $S_{1}-S_{3}$ as follows

- $A_{s \frown i}=\left\{n \in A_{s}: c(\operatorname{lh}(s \frown i), n)=i\right\}, i \in\{0, \cdots, r-1\}$

Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW, so ω is not a $(\mathcal{J}, \mathcal{I})$-small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in\{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^{+}$such that $x(k-1)=i$ for every $k \in C$. It is not hard to see that for every $n \in C$,

This implies that C is \mathcal{J}-homogeneous as desired

Sketch of proof

$(3) \Rightarrow(1)$ Let $r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring of $[\omega]^{2}$.
We shall define a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ that satisfies $S_{1}-S_{3}$ as follows

- $A_{\emptyset}=\omega$,
- $A_{s \frown i}=\left\{n \in A_{s}: c(l h(s \frown i), n)=i\right\}, i \in\{0, \cdots, r-1\}$.

Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW, so ω is not a $(\mathcal{J}, \mathcal{I})$-small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in\{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^{+}$such that $x(k-1)=i$ for every $k \in C$. It is not hard to see that for every $n \in C$,

This implies that C is \mathcal{J}-homogeneous as desired.

Sketch of proof

$(3) \Rightarrow(1)$ Let $r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring of $[\omega]^{2}$.
We shall define a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ that satisfies $S_{1}-S_{3}$ as follows

- $A_{\emptyset}=\omega$,
- $A_{s \frown i}=\left\{n \in A_{s}: c(l h(s \frown i), n)=i\right\}, i \in\{0, \cdots, r-1\}$.

Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW, so ω is not a $(\mathcal{J}, \mathcal{I})$-small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in\{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^{+}$such that $x(k-1)=i$ for every $k \in C$.

This implies that C is \mathcal{J}-homogeneous as desired

Sketch of proof

$(3) \Rightarrow(1)$ Let $r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring of $[\omega]^{2}$.
We shall define a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ that satisfies $S_{1}-S_{3}$ as follows

- $A_{\emptyset}=\omega$,
- $A_{s \frown i}=\left\{n \in A_{s}: c(l h(s \frown i), n)=i\right\}, i \in\{0, \cdots, r-1\}$.

Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW, so ω is not a $(\mathcal{J}, \mathcal{I})$-small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in\{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^{+}$such that $x(k-1)=i$ for every $k \in C$. It is not hard to see that for every $n \in C$,

$$
\{k \in C: c(\{n, k\}) \neq i\} \subseteq C \backslash A_{x \mid n} \in \mathcal{J}
$$

This implies that C is \mathcal{J}-homogeneous as desired.

Sketch of proof

$(3) \Rightarrow(1)$ Let $r \in \omega$, and $c:[\omega]^{2} \rightarrow\{0, \cdots, r-1\}$ being a coloring of $[\omega]^{2}$.
We shall define a family $\left\{A_{s}: s \in r^{<\omega}\right\}$ that satisfies $S_{1}-S_{3}$ as follows

- $A_{\emptyset}=\omega$,
- $A_{s \frown i}=\left\{n \in A_{s}: c(l h(s \frown i), n)=i\right\}, i \in\{0, \cdots, r-1\}$.

Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW, so ω is not a $(\mathcal{J}, \mathcal{I})$-small set, this implies that there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for all $n \in \omega$. Then there exists $i \in\{0, \cdots, r-1\}$, and $C \subseteq B$ with $C \in \mathcal{I}^{+}$such that $x(k-1)=i$ for every $k \in C$. It is not hard to see that for every $n \in C$,

$$
\{k \in C: c(\{n, k\}) \neq i\} \subseteq C \backslash A_{x \mid n} \in \mathcal{J}
$$

This implies that C is \mathcal{J}-homogeneous as desired.

Our results

Theorem

Let \mathcal{I}, \mathcal{J} be ideals on ω such that $(\mathcal{I}, \mathcal{J})$ is weak selective. For the following conditions:
(1) $[0,1]$ has $(\mathcal{I}, \mathcal{J})-B W$;
(2) For every $r \in \omega$, every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ fulfilling conditions $S_{1}-S_{3}$, there are $x \in r^{\omega}$ and $C \in \mathcal{J}^{+}$such that $C \subseteq^{*} A_{x \mid n}$ for each $\left.n \in \omega\right\}$.
(3) $[0,1]$ has $(\mathcal{J}, \mathcal{I})-B W$.

It holds that $(1) \Rightarrow(2) \Rightarrow(3)$.

Sketch of proof

$(1) \Rightarrow(2)$ Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW implies that $\omega \notin \mathcal{S}_{(\mathcal{J}, \mathcal{I})}$.
So for every $r \in \omega$, every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ fulfilling conditions
$S_{1}-S_{3}$, there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for
every $n \in \omega$.
It is easy to see that

is a partition of B into sets from \mathcal{J}.
Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J} \mid B$ is locally selective Thus, there exists $C \subset B$ with $C \in \mathcal{J}^{+}$such that
$\left|C \cap B \backslash A_{x \mid 1}\right| \leq 1,\left|C \cap B \cap\left(A_{x \mid 2} \backslash A_{x \mid n}\right)\right| \leq 1$ for every $n \in \omega$. It
is easy to check that the set C is desired

Sketch of proof

$(1) \Rightarrow(2)$ Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW implies that $\omega \notin \mathcal{S}_{(\mathcal{J}, \mathcal{I})}$. So for every $r \in \omega$, every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ fulfilling conditions $S_{1}-S_{3}$, there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for every $n \in \omega$.
It is easy to see that
is a partition of B into sets from \mathcal{J}
Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J} \mid B$ is locally selective Thus, there exists $C \subset B$ with $C \in \mathcal{J}^{+}$such that $\left|C \cap B \backslash A_{x \mid 1}\right| \leq 1,\left|C \cap B \cap\left(A_{x \mid 2} \backslash A_{x \mid n}\right)\right| \leq 1$ for every $n \in \omega$. It is easy to check that the set C is desired

Sketch of proof

$(1) \Rightarrow(2)$ Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW implies that $\omega \notin \mathcal{S}_{(\mathcal{J}, \mathcal{I})}$.
So for every $r \in \omega$, every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ fulfilling conditions $S_{1}-S_{3}$, there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for every $n \in \omega$.
It is easy to see that

$$
B \backslash A_{x \mid 1}, B \cap\left(A_{x \mid 2} \backslash A_{x \mid 1}\right), \cdots, B \cap\left(A_{x \mid n+1} \backslash A_{x \mid n}\right), \cdots
$$

is a partition of B into sets from \mathcal{J}.
Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J} \mid B$ is locally selective.
Thus, there exists $C \subset B$ with $C \in \mathcal{J}^{+}$such that
$\left|C \cap B \backslash A_{x \mid 1}\right| \leq 1,\left|C \cap B \cap\left(A_{x \mid 2} \backslash A_{x \mid n}\right)\right| \leq 1$ for every $n \in \omega$. It
is easy to check that the set C is desired.

Sketch of proof

$(1) \Rightarrow(2)$ Note that $[0,1]$ has $(\mathcal{I}, \mathcal{J})$-BW implies that $\omega \notin \mathcal{S}_{(\mathcal{J}, \mathcal{I})}$. So for every $r \in \omega$, every family $\left\{A_{s}: s \in r^{<\omega}\right\}$ fulfilling conditions $S_{1}-S_{3}$, there are $x \in r^{\omega}$ and $B \in \mathcal{I}^{+}$such that $B \backslash A_{x \mid n} \in \mathcal{J}$ for every $n \in \omega$.
It is easy to see that

$$
B \backslash A_{x \mid 1}, B \cap\left(A_{x \mid 2} \backslash A_{x \mid 1}\right), \cdots, B \cap\left(A_{x \mid n+1} \backslash A_{x \mid n}\right), \cdots
$$

is a partition of B into sets from \mathcal{J}.
Note that $(\mathcal{I}, \mathcal{J})$ is weak selective, so $\mathcal{J} \mid B$ is locally selective.
Thus, there exists $C \subset B$ with $C \in \mathcal{J}^{+}$such that
$\left|C \cap B \backslash A_{x \mid 1}\right| \leq 1,\left|C \cap B \cap\left(A_{x \mid 2} \backslash A_{x \mid n}\right)\right| \leq 1$ for every $n \in \omega$. It is easy to check that the set C is desired.

Sketch of proof

$(2) \Rightarrow(3)$ It is enough to show that ω is not an $(\mathcal{I}, \mathcal{J})$-small set.
To this end, for every $r \in \omega$, for any family $\left\{A_{s}: s \in 2^{<\omega}\right\}$
satisfying $S_{1}-S_{3}$. By (2), there are $x \in r^{\omega}$ and $C \in \mathcal{J}^{+}$such that for each $n \in \omega, C \backslash A_{x \mid n} \in$ Fin $\subseteq \mathcal{I}$.

Sketch of proof

$(2) \Rightarrow(3)$ It is enough to show that ω is not an $(\mathcal{I}, \mathcal{J})$-small set.
To this end, for every $r \in \omega$, for any family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfying $S_{1}-S_{3}$.

Sketch of proof

$(2) \Rightarrow(3)$ It is enough to show that ω is not an $(\mathcal{I}, \mathcal{J})$-small set.
To this end, for every $r \in \omega$, for any family $\left\{A_{s}: s \in 2^{<\omega}\right\}$ satisfying $S_{1}-S_{3}$. By (2), there are $x \in r^{\omega}$ and $C \in \mathcal{J}^{+}$such that for each $n \in \omega, C \backslash A_{x \mid n} \in$ Fin $\subseteq \mathcal{I}$.

Our results

Definition

\mathcal{I} is h-Ramsey (respectively, h-Ramsey*) if for every $A \in \mathcal{I}^{+}, \mathcal{I} \mid A$ is Ramsey (respectively, $\mathcal{I} \mid A$ is Ramsey*).

Our results

Definition

\mathcal{I} is h-Ramsey (respectively, h-Ramsey ${ }^{*}$) if for every $A \in \mathcal{I}^{+}, \mathcal{I} \mid A$ is Ramsey (respectively, $\mathcal{I} \mid A$ is Ramsey*).

Theorem

Let \mathcal{I}, \mathcal{J} be ideals on ω and \mathcal{J} being a weak Q-ideals such that $\mathcal{I} \leq_{R B} \mathcal{J}$,
(1) If \mathcal{J} is h-Ramsey*, then \mathcal{I} is h-Ramsey*;
(2) If \mathcal{J} is h-Ramsey, then \mathcal{I} is h-Ramsey.

Sketch of proof

The assertion (1) follows from the following lemmata.
Lemma (Theorem 4.3,[1])
h-Ramsey* is equal to h-BW property.

Lemma (Theorem 6.2, 2])
The h-BW property is preserved under the $\leq_{R B}$-order in the realm of Q-ideals.

Sketch of proof

The assertion (1) follows from the following lemmata.
Lemma (Theorem 4.3,[1])
h-Ramsey* is equal to h-BW property.

Lemma (Theorem 6.2, [2])
The h-BW property is preserved under the $\leq_{R B}$-order in the realm of Q-ideals.

Sketch of proof

The key in the proof of the assertion (2) is the following.

Lemma (Theorem 3.16, [1])

\mathcal{I} is h-Ramsey if, and only if \mathcal{I} is h-Fin-BW and being a weak Q-ideal.

Claim
Let \mathcal{I}, \mathcal{T} be ideals on ω, and \mathcal{J} being a weak Q-point. If $\mathcal{I} \leq_{R B} \mathcal{J}$ then \mathcal{I} is also a weak Q-ideal.

Sketch of proof

The key in the proof of the assertion (2) is the following.

Lemma (Theorem 3.16, [1])

\mathcal{I} is h-Ramsey if, and only if \mathcal{I} is h-Fin-BW and being a weak Q-ideal.

Claim

Let \mathcal{I}, \mathcal{J} be ideals on ω, and \mathcal{J} being a Q-ideal. If $\mathcal{I} \leq_{K B} \mathcal{J}$ then \mathcal{I} is also a Q-ideal.

Claim
Let \mathcal{I}, \mathcal{J} be ideals on ω, and \mathcal{J} being a weak Q-point. If $\mathcal{I} \leq_{R B} \mathcal{J}$ then \mathcal{I} is also a weak Q-ideal.

Sketch of proof

The key in the proof of the assertion (2) is the following.

Lemma (Theorem 3.16, [1])

\mathcal{I} is h-Ramsey if, and only if \mathcal{I} is h-Fin-BW and being a weak Q-ideal.

Claim

Let \mathcal{I}, \mathcal{J} be ideals on ω, and \mathcal{J} being a Q-ideal. If $\mathcal{I} \leq_{K B} \mathcal{J}$ then \mathcal{I} is also a Q-ideal.

Claim

Let \mathcal{I}, \mathcal{J} be ideals on ω, and \mathcal{J} being a weak Q-point. If $\mathcal{I} \leq_{R B} \mathcal{J}$ then \mathcal{I} is also a weak Q-ideal.

Reference

R. Filipów, N. Mrożek, I. Recław and P. Szuca, Ideal version of Ramsey Theorem, Czech. Math, 136 (2011), 289-308.

國 R. Filipów, N. Mrożek, I. Recław and P. Szuca, Ideal Convergence of Bounded Sequences, J. Symbolic Logic, 72 (2007), 501-512.

Thank you!

